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Oh give thanks to the LORD, for he is good,

for his steadfast love endures forever!

Let the redeemed of the LORD say so,

whom he has redeemed from trouble

and gathered in from the lands,

from the east and from the west,

from the north and from the south.

Some wandered in desert wastes,

finding no way to a city to dwell in;

hungry and thirsty,

their soul fainted within them.

Then they cried to the LORD in their trouble,

and he delivered them from their distress.

He led them by a straight way

till they reached a city to dwell in.

Let them thank the LORD for his steadfast love,

for his wondrous works to the children of man!

For he satisfies the longing soul,

and the hungry soul he fills with good things.

Psalm 107:1–9 (ESV)



This thesis, defended on Good Friday, is dedicated to the glory of God, who made this

world and made me with the mathematical skill to understand and build in it, and who

redeemed me from sin and death to live for him by his son, Jesus.
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SUMMARY

This thesis shows how we can exploit low-dimensional structure in high-dimensional

statistics and machine learning problems via optimization. We show several settings where,

with an appropriate choice of optimization algorithm, we can perform useful estimation with

a complexity that scales not with the original problem dimension but with a much smaller

intrinsic dimension.

In the low-rank matrix completion and denoising problems, we can exploit low-rank

structure to recover a large matrix from noisy observations of some or all of its entries. We

prove state-of-the-art results for this problem in the case of Poisson noise and show that

these results are minimax-optimal.

Next, we study the problem of recovering a sparse vector from nonlinear measurements.

We present a lifted matrix framework for the sparse phase retrieval and sparse PCA prob-

lems that includes a novel atomic norm regularizer. We prove that solving certain convex

optimization problems in this framework yields estimators with near-optimal performance.

Although we do not know how to compute these estimators efficiently and exactly, we

derive a principled heuristic algorithm for sparse phase retrieval that matches existing

state-of-the-art algorithms.

Third, we show how we can exploit low-dimensional manifold structure in supervised

learning. In a reproducing kernel Hilbert space framework, we show that smooth functions

on a manifold can be estimated with a complexity scaling with the manifold dimension

rather than a larger embedding space dimension.

Finally, we study the interaction between high ambient dimension and a lower intrinsic

dimension in the harmless interpolation phenomenon (where learned functions generalize

well despite interpolating noisy data). We present a general framework for this phenomenon

in linear and reproducing kernel Hilbert space settings, proving that it occurs in many

situations that previous work has not covered.

xiii



CHAPTER 1

INTRODUCTION

In many modern statistics and machine learning problems, we are trying to estimate an

object that has a very high number of degrees of freedom. In imaging (photographic,

medical, seismic, etc.), a high-resolution 2D or 3D image could have millions or even

billions of pixels/voxels. In machine learning applications such as image classification or

fitness tracking, we need to estimate a function that has a very high-dimensional domain

(and, being a function, has infinite degrees of freedom). Classical statistics and learning

theory tell us that we cannot make any meaningful estimates without a very large amount

of data. However, real problems often have underlying structure that makes them more

tractable.

This thesis studies how structure plays a role in two basic classes of problem: in the

recovery problem, we want to recover a (large) set of unknown parameters via measurements

that may be noisy, indirect, or incomplete; in the learning problem, we are given many

samples of some pairing (feature, label), and we want to predict future labels from only the

feature data.

For the recovery problem, one example is the way a medical CT scanner produces a 3-D

image of (part of) a patient’s body by sending X-rays through the body at many different

angles. The more measurements we make, the more time and radiation exposure is required.

To recover a 10003-pixel 3-D volume, we classically need at least 109 measurements.

Another example is predicting user ratings in a recommendation system (e.g., Netflix); we

want to predict all possible user/item ratings from the tiny fraction for which we have actual

ratings. In both cases, hidden low-dimensional structure can help us. Real-world images are

often sparse (i.e., mostly zero) in a suitable transformed representation (this is why image

compression works). Similarly, for a recommendation system, if the number of factors that
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determine user/item ratings is small, the resulting ratings matrix will be low-rank. Sparsity

and low rank are types of structure that we can exploit to make recovery more tractable and

efficient.

For the learning problem, a common modern example is learning to classify images

based on many labeled example images. A much simpler example is linear regression, in

which we try to fit a linear function to data. In general, this is the problem of estimating

a function from samples of its values. The task difficulty depends on the complexity of

the function and on the complexity of the set of possible (or likely) inputs. A completely

arbitrary function is impossible to estimate, but most reasonable functions depend smoothly

on their input (or are otherwise somehow “regular”); for such a function, we can make

meaningful inferences about its value away from the points where we sample it. Similarly,

the domain that actually matters may be far simpler than a naı̈ve representation would

suggest; for example, a 1-megapixel image in principle has 106 degrees of freedom, but real

images are not simply 106 arbitrary pixel values (almost all such images would look like

static on a TV screen). We want to understand how such structure (domain and smoothness)

determines the difficulty of learning a function.

A common theme throughout this thesis is the role of optimization in estimation. A

general model for both the recovery and learning problems is that we observe some data

(xi, yi), i = 1, . . . , n, where xi are known and yi ≈ f(xi, β
∗), where the function f encodes

the model, and β∗ is a vector of unknown parameters. A common method to find an estimate

is to solve an optimization program of the form

β̂ = arg min
β

n∑
i=1

ℓf (yi, xi, β),

where ℓf (y, x, β) is some “loss” function that measures how well the parameter β explains

the data pair (x, y). Almost all maximum likelihood estimates take this form (where

ℓf (y, x, β) is the negative log-likelihood of the observations y given x and β).
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Suppose the parameter vector β∗ has structure that we want to exploit. If r(β) is some

function that is large for “unstructured” candidate parameter vectors β but is small for highly

structured vectors like β∗, we can solve the following regularized optimization program:

β̂ = arg min
β

n∑
i=1

ℓf (yi, xi, β) + r(β).

The additional penalty encourages solutions that are structured.

A simple example model illustrates how structure and optimization play a role in both

recovery and learning. Consider the classical linear model, where, for some vector β∗, we

make n noisy linear measurements of the form yi ≈ ⟨xi, β∗⟩, i = 1, . . . , n, where the xi’s

are design vectors. We will suppose that the design vectors are chosen independently at

random from some probability distribution. A typical estimation procedure is to solve a

least-squares optimization problem of the form

β̂ = arg min
β

n∑
i=1

(yi − ⟨xi, β⟩)2 (+ regularization).

In the recovery problem we care about estimating β∗ itself. If β∗ ∈ Rp, then, classically,

we need n ≳ p measurements to obtain a unique solution to the above optimization problem,

and our estimate β̂ will have squared ℓ2 error of order ∥β̂ − β∗∥2ℓ2 ≈ p/n.1 However, if the

vector β∗ is sparse (say, s nonzero elements), it is well-known that, if we add an ℓ1-norm

regularization to the least-squares problem (the LASSO algorithm), we only need (within

logarithmic factors) n ≳ s measurements, and the error will scale like s/n. The sparse

structure makes recovery easier in terms of sample complexity and corruption due to noise.

On the other hand, in the learning problem, we only need to predict future observations

y ≈ ⟨x, β∗⟩, where x has the same probability distribution as the design vectors. Note that

we only need to recover the components of β∗ that significantly affect the observations;

1This assumes that the design vectors xi are isotropic (i.e., Exi ⊗ xi = Ip) and the measurement errors
are random, independent, and zero-mean.
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this is potentially a much easier problem than recovering β∗ itself. The covariance of the

design vectors given by Σ = Exi ⊗ xi turns out to be key; the number of measurements

we need and our prediction error will depend on the (effective) rank of Σ. Here, structure

in the design covariance determines problem difficulty. A near-optimal predictor of y can

be obtained via ridge regression, in which we solve the above least-squares problem with a

simple ℓ2-norm regularizer.

1.1 General approach

This thesis considers several different forms of low-dimensional structure. These include

sparsity, low rank (both in matrix estimation/completion and linear regression), and manifold

structure. Later, I will describe and motivate each of these and explain my specific methods

for each problem in more detail. Here, however, I want to describe the general themes of my

work, using examples from my work for illustration.

All of my work in this thesis exploits structure with estimators defined by optimization

problems. For each type of structure, we must design a suitable optimization program that

takes advantage of that structure; understanding the properties of solutions to such programs

is a key part of this. Then, for real-world applications, we must design algorithms that can be

practically implemented and run on a computer. Finally, our theoretical guarantees assume

randomly-sampled data; this is often a natural assumption, and it often gives us (with high

probability) very effective experiment designs even when doing so “by hand” is difficult.

1.1.1 Analyzing and encoding structure

To take advantage of structure via optimization, the first step is to choose an optimization

algorithm whose output is an estimator that captures the problem’s structure. For example,

if we are trying to estimate a sparse vector, algorithms taking advantage of this sparsity

typically have an explicit mechanism for encouraging sparse estimators, such as an ℓ1 norm.

Another example is trying to recover a low-rank matrix. A common way to encode low

4



rank in an estimator is to use a convex program with a nuclear norm penalty; the nuclear

norm promotes low rank because it is the ℓ1 norm on the singular values of a matrix. This is

my approach to the matrix completion problem in this thesis (Chapter 2).

Encoding even simple types of structure in an optimization problem can be quite chal-

lenging when the measurements are nonlinear. The simplest formulations of phase retrieval

and PCA result in nonconvex programs; a common technique to transform these problems to

be convex is to “lift” the vector parameters into a matrix space. Previous attempts to exploit

sparsity in this framework gave highly suboptimal performance, since encoding the sparse-

and-low-rank structure of the resulting matrix parameter is delicate. My work on sparse

phase retrieval and PCA (Chapter 3) develops a novel way to encode sparse-and-low-rank

structure. The key tool is a new matrix norm that we can use as regularization in a convex

program.

Another quite different type of structure is manifold structure. This knowledge can also

be exploited by an optimization program. In my work on manifold regression (Chapter 4), I

develop a framework for studying and estimating functions on manifolds; the key idea is

that smooth functions on a manifold lie in special intrinsic function spaces (reproducing

kernel Hilbert spaces or RKHSs) defined in terms of the manifold’s intrinsic spectral

decomposition. We can take advantage of this structure and smoothness by performing

kernel (RKHS) regression, which is an optimization program that forces solutions to be

smooth functions (and can be easily solved via a kernel function associated with the function

space).

My approach to RKHS regression (which also includes the work in Chapter 5) relies

on the (approximate) low rank of the measurement covariance operator as in the linear

regression example above. In the kernel case, the covariance is the integral operator of the

kernel on the function input domain. The number of function samples we need and the error

due to noise scale proportionally to the effective rank of this integral operator.
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1.1.2 Properties of estimates obtained with optimization

To understand why certain optimization algorithms work well for statistical estimation and

machine learning, we must carefully study the properties of estimates that these algorithms

return. Some of these properties (sparsity, low rank, smoothness on a manifold, etc.) are

ones we explicitly design the algorithm to exploit. Other properties seem to be present for

no obvious reason. Both categories of estimator properties are important.

The previous section outlined a variety of ways in which we can design optimization

algorithms to exploit problem structure. To prove error guarantees, we must understand how

these algorithmic biases do, in fact, result in good estimates. For example, when estimating

a sparse vector, we may set up an algorithm to encourage sparsity in the solution. However,

it is usually not enough simply to say that the resulting estimate is sparse; we must carefully

analyze the geometry of the problem to understand how the estimator contains the desired

structure and how it compares to the true parameter vector.

In addition (and much less obviously), estimators can have very interesting properties

that we did not explicitly encourage (or, in many cases, expect). A well-known example of

this is the interpolation phenomenon in supervised learning. A recent empirical observation

is that in many models with a very large number of parameters (e.g., deep neural networks),

the learned function can interpolate noisy training data and still perform well when tested on

new data. My contribution to this area is a new theoretical framework for understanding

why this happens in linear regression and classification models (Chapter 5). We show that

the fundamental reason is an implicit regularization (or smoothing) that arises when we have

a very large number of individually insignificant parameters.

1.1.3 Practical optimization on large-scale problems

For any discussion of optimization algorithms to be useful in the real world, we must be

able to implement something on a computer. Furthermore, in order to solve the large-scale

problems that arise in modern applications, these algorithms must be efficient.
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I consider this most explicitly in my work on sparse phase retrieval and PCA (Chapter 3).

I derive an abstract convex program that yields near-optimal results, but it is not clear how

to solve it exactly and efficiently. Much of Chapter 3 is devoted to deriving a principled

implementable algorithm, and it took considerable time to implement an efficient first-order

algorithm that could solve large problems.

This issue is also present in my other work. In my matrix completion work, an optimal

estimator can be computed with a single step of singular value thresholding; even for very

large problems, this can be tractably computed with iterative algorithms, especially when

our samples of the matrix are sparse. My work on manifold regression and my work on the

interpolation phenomenon both use a reproducing kernel Hilbert space (RKHS) framework;

this allows us practically to solve regression and classification problems with a very large or

infinite number of degrees of freedom.

1.1.4 Randomized data acquisition (experiment design)

Randomized measurements are a fundamental part of all my work. In Chapters 3 to 5, I

assume that the data pairs (xi, yi) are all drawn independently from the same distribution. In

Chapter 2, I assume that we subsample the entries of a matrix at random (each entry being

sampled with the same probability independently of the others).

This type of assumption is standard for the learning problem. In the statistical theory

for this problem, we typically assume that the data samples (x1, y1) . . . , (xn, yn) and future

“test” data are all drawn independently from the same distribution.

For the recovery problem, we often have control over the experiment design variables

x1, . . . , xn. However, choosing the design variables at random is often (nearly) optimal.

Intuitively, random measurements work well in structured high-dimensional problems

because (if properly distributed) they can, with very high probability, “discover” the hidden

structure in a problem even if we don’t know where to look for it. For example, in linear

sparse recovery, accurate recovery requires the design matrix (the matrix with the xi’s
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as rows) to satisfy a certain restricted isometry property; verifying that any given matrix

satisfies this property is computationally intractable, but we can prove that a matrix with

randomly chosen rows will work well with very high probability (see, e.g., [1, Chapter 6]).

1.2 Thesis overview

1.2.1 Low-rank matrix completion and denoising under Poisson noise

In Chapter 2, I consider the problem of recovering a low-rank matrix M from noisy observa-

tions of all or a subset of its entries. The low-dimensional structure that I consider is low

matrix rank. We analyze several estimators computed via convex programs with nuclear

norm regularization to promote low-rank solutions.

For the specific case of Poisson noise, we prove that these estimators achieve minimax-

optimal bounds (in the Frobenius norm error metric) that depend on the matrix rank, the

fraction of the elements observed, and maximal row and column sums of the true matrix.

If M is a nonnegative matrix with rank r, and we sample the entries randomly (each entry

being sampled with probability p independently of the others), and observe a Poisson(Mij)

random variable for each sampled entry, our estimator achieves, with high probability,

∥M − M̂∥F ≲
√

r

p
(max

i

√∑
j

(Mij + (1− p)M2
ij) + max

j

√∑
i

(Mij + (1− p)M2
ij))

when p is large enough. We also extend these results to handle the case of matrix multinomial

denoising. Note the key role of the rank parameter (which controls the intrinsic dimension)

in the error bound.

1.2.2 Lifted sparse phase retrieval/PCA

In the phase retrieval problem (one common formulation), we want to recover a vector

β ∈ Rp from (noisy) squared measurements of the form yi ≈ |⟨xi, β⟩|2. It has lately been

shown that the difficulty of this problem scales linearly in the dimension p as in the linear
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measurement case. However, in the sparse case, the best theoretical results for practical

algorithms require n ≳ s2 measurements to recover an s-sparse vector.

In Chapter 3, I formulate a novel convex relaxation of the sparse phase retrieval problem

via the lifting technique (quadratic measurements are linear when “lifted” to a matrix space

as in |⟨x, β⟩|2 = ⟨x⊗ x, β ⊗ β⟩) along with a novel matrix norm regularizer. We show that

the resulting estimator does indeed achieve sample and noise complexity performance of

the same order as in linear sparse recovery (in particular, complexity nearly proportional

to the sparsity s). We apply the same technique with similar results to the sparse principal

component analysis (sparse PCA) problem, which has had similar theoretical shortcomings.

While our convex programs are abstract, and we do not know efficient algorithms for

solving them, for the case of sparse phase retrieval we derive a principled heuristic and show

empirically that the resulting nonconvex algorithm matches existing state-of-the-art sparse

phase retrieval algorithms.

1.2.3 Learning on a manifold

Classically, the complexity of learning a function depends exponentially the dimension of

the function’s domain. If the domain is high-dimensional (e.g., we are trying to classify

images with millions of pixels), this theory gives no hope of meaningful learning. However,

very often, the domain of interest (e.g., the set of realistic images) has a much lower intrinsic

dimension; a common model is that the domain is a low-dimensional manifold embedded in

the higher-dimensional space.

In Chapter 4, I study manifold domains through a reproducing kernel Hilbert space

(RKHS) framework; in particular, I study certain special RKHSs intrinsic to a manifold (e.g.,

corresponding to the heat kernel) and show that the difficulty of learning a function in such

a space scales with the intrinsic manifold dimension rather than the embedding dimension.

The algorithm I analyze is kernel regression with the intrinsic manifold kernels; the

regression estimate can be described as the solution to a convex regularized least-squares
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optimization problem. With a kernel method, the solution can be computed practically, even

though the function space over which we are optimizing can be infinite-dimensional.

1.2.4 Harmless interpolation in regression and classification

Classical learning theory suggests that when trying to estimate a function from noisy samples,

we should not attempt to interpolate exactly the corrupted observations (we will overfit to the

data, resulting in large “variance” error due to noise). However, recent research has shown

that empirically, interpolating noisy samples does not seem to be a significant problem in

certain highly overparametrized settings (i.e., when the number of degrees of freedom in our

model is much larger than the number of samples).

Most prior theoretical results on this topic assume highly restrictive linear models. In

Chapter 5, I formulate a novel analysis framework and show that this “harmless interpolation”

occurs in a much more general reproducing kernel Hilbert space framework. Again, in an

RKHS framework, we can write down the natural minimum-norm interpolator as a convex

program.

An RKHS can be described by a sequence of numbers {λℓ}∞ℓ=1 (eigenvalues of an

integral operator), typically arranged in decreasing order. Larger eigenvalues correspond

to components of the space with more important information; the decay determines the

intrinsic dimension of the function space.

To get good regression performance with finite samples, the RKHS must have a small

enough intrinsic dimension. The key to getting good generalization even in the presence of

noise is that the RKHS must have a very large number of small components (eigenvalues); λℓ

must decay quickly (to get good learning performance on the important components), but not

too quickly. A large number of extra degrees of freedom yields an “implicit regularization”

that causes our estimate to behave (except extremely close to sample points) as though we

had added explicit regularization to our problem (a typical way to smooth out the noise

error).

10



Although this problem is typically studied for regression, we also show how our frame-

work can be applied to the classification problem. In accord with the fact that classification

is fundamentally the easier problem, we demonstrate settings in which regression is not

consistent but classification is (which had previously only been shown for a much more

restricted class of problems).

Computationally, the kernel method again allows us to compute estimates efficiently,

even though the function space is (necessarily) very high-dimensional.
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CHAPTER 2

LOW-RANK MATRIX COMPLETION AND DENOISING UNDER POISSON

NOISE

In this chapter,1 we consider the problem of estimating a low-rank matrix from the obser-

vation of all or a subset of its entries in the presence of Poisson noise. When we observe

all entries, this is a problem of matrix denoising; when we observe only a subset of the

entries, this is a problem of matrix completion. In both cases, we exploit an assumption that

the underlying matrix is low-rank. Specifically, we analyze several estimators, including a

constrained nuclear-norm minimization program, nuclear-norm regularized least squares,

and a nonconvex constrained low-rank optimization problem. We show that for all three

estimators, with high probability, we have an upper error bound (in the Frobenius norm

error metric) that depends on the matrix rank, the fraction of the elements observed, and

maximal row and column sums of the true matrix. We furthermore show that the above

results are minimax optimal (within a universal constant) in classes of matrices with low

rank and bounded row and column sums. We also extend these results to handle the case of

matrix multinomial denoising and completion.

2.1 Introduction

2.1.1 Low-rank models for count data

We consider the problem of estimating a non-negative matrix M ∈ Rm×n given independent

observations distributed according to Poisson(Mij) for (i, j) ∈ Ω, where Ω is a (not

necessarily strict) subset of {1, . . . ,m} × {1, . . . , n}. If we do not make an observation for

every entry of the matrix, the recovery problem is, in general, ill-posed in the absence of

1This work is published in [2].
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any additional assumptions on the underlying matrix. A common assumption for this type

of problem is that the unknown matrix M is low-rank; i.e., the dimension of the spans of

the columns and rows of M is much smaller than the actual numbers of columns and rows.

This assumption greatly reduces the number of degrees of freedom in the model, making the

recovery problem far more tractable. Note that even if we do observe every entry, we can

still exploit the structure of the model to reduce the error due to noise.

While the problems of matrix completion and denoising have received a significant

amount of attention in the settings of Gaussian noise and of small, bounded (in ℓ2) perturba-

tions (e.g., [3, 4, 5]), Poisson noise models have received comparatively less attention. In

this chapter, we focus primarily on the Poisson model, but we also examine closely-related

multinomial models; this includes the case in which we have a single probability distribution

over matrix coordinates (for which our result is a corollary of our Poisson results) as well as

the case in which we make independent multinomial observations of matrix rows. Collec-

tively, these models are often natural in applications where the observations arise via some

form of counting process. The ability to recover (or de-noise) a low-rank signal from noisy,

count-based observations is useful in many situations. We briefly mention two examples.

One potential application area involves imaging systems. This includes conventional

cameras (which often suffer from noise in low light or with short exposures), but also

3-D imaging methods such as X-ray computed tomography (CT) and positron emission

tomography (PET), which, in medical imaging, would greatly benefit from an improved

noise/radiation dose tradeoff. In these scenarios, the Poisson noise model is natural because

the observations consists of counts of particle (e.g., photon) arrivals at a detector. In many

of these settings, such as when observing a periodic or slowly-varying sequence of images,

a low-rank assumption on the underlying data is natural (see, e.g., [6] for an overview of

low-rank modeling in image applications).

Another important application is topic modeling, which is a common form of dimen-

sionality reduction for text documents. In this case, our observations consist of counts of
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word occurrences in a corpus of documents. If we suppose that these documents can be

decomposed according to a small set of topics, and that within each topic documents will

exhibit similar word occurrence counts, then a low-rank assumption on the word-frequency

matrix is natural. For example, the popular PLSI model [7] uses a multinomial probability

model parameterized by a low-rank matrix.

Low-rank models are also popular in nonnegative matrix factorization, which is com-

monly applied in a range of contexts where count data is common. A wide variety of

such models have been developed, along with inference algorithms such as expectation

maximization, variational Bayes, and Markov chain Monte Carlo [8, 9, 10, 11]. These

models and algorithms have been applied to many tasks, especially recommendation systems

[12, 13]. However, the algorithms used are nonconvex, and there is little in the way of

theoretical guarantees for their performance in the Poisson or multinomial setting.

2.1.2 Summary of main results for Poisson noise

In our analysis, we assume a Bernoulli sampling of the matrix entries: i.e., the events

{(i, j) ∈ Ω} are independent with probability p ∈ (0, 1], and the observed Poisson random

variables are independent conditioned on Ω. Note that taking p = 1 handles the case in

which we observe every entry of the matrix. For a matrix A, ∥A∥∗, ∥A∥, and ∥A∥F denote

the nuclear norm, operator norm, and Frobenius norm of A, respectively.

LetAΩ : R
m×n → RΩ denote the entry-wise sampling operator given by (AΩ(Z))(i,j) =

Zij for (i, j) ∈ Ω. Note that its adjoint A∗ : RΩ → Rm×n maps the vector (x(i,j))(i,j)∈Ω ∈

RΩ to the m× n matrix whose (i, j)th entry is x(i,j) if (i, j) ∈ Ω and zero otherwise.

Given observations X ∼ Poisson(AΩ(M)), we consider several different estimators

with similar theoretical properties. The first can be interpreted as a matrix version of the

Dantzig selector [14]:

M̂ (1) = arg min
M ′∈[0,∞)m×n

∥M ′∥∗ s.t. ∥A∗
Ω(X)− pM ′∥ ≤ δ, (2.1)

14



where δ > 0 is a parameter which we will see how to set later. The second is a nuclear-

norm-regularized least-squares type estimator:

M̂ (2) = arg min
M ′∈[0,∞)m×n

∥A∗
Ω(X)− pM ′∥2F + λ∥M ′∥∗, (2.2)

where λ > 0 is another parameter which we will set. The third is least-squares under an

exact low-rank constraint:

M̂ (3) = arg min
M ′∈[0,∞)m×n

∥A∗
Ω(X)− pM ′∥F s.t. rank(M ′) ≤ r, (2.3)

where r is an upper bound on the rank of the true rate matrix M . This problem is not convex

(and is, in general, hard to solve directly while respecting nonnegativity constraints), but we

will see later how we can address this issue without affecting its theoretical properties.

Theorem 1, which is the main result of Section 2.2.1, states that, if M has rank r, and

hyperparameters are properly chosen, each of the estimators {M̂ (i)}3i=1 satisfies, with high

probability,

∥M − M̂ (i)∥F ≲
√

r

p
σ̃(M) + logarithmic terms, (2.4)

where

σ̃(M) = max
i

√∑
j

(Mij + (1− p)M2
ij) + max

j

√∑
i

(Mij + (1− p)M2
ij).

In many situations (see Section 2.3.3), the logarithmic terms are negligible, so we can

approximate this result by the bound

∥M − M̂ (i)∥F ≲
√

r

p
σ̃(M). (2.5)

Section 2.3 uses two standard methods to find lower bounds on the minimax risk of

any estimator in classes of matrices with bounded row and column sums. These results
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(Theorems 3 and 4) can be summarized as follows: over all nonnegative matrices M such

that rank(M) ≤ r, and σ̃(M) ≤ σ, we have

inf
M̂

sup
M

EM∥M − M̂∥F ≳
√

r

p
σ.

Thus Theorem 1 is optimal (up to a multiplicative constant and an additive logarithmic

factor) for this class of matrices.

To gain a more intuitive understanding of our result, it is helpful to examine the formula

for σ̃. For simplicity, assume, without loss of generality, that the row sums dominate the

column sums, so that

σ̃ ≈ max
i

√∑
j

(Mij + (1− p)M2
ij).

The two terms inside the sum have different roles. The first term (Mij) corresponds to the

variance of the Poisson random variables. Indeed, if we take p = 1, this is the only term, so

our result has the form

∥M − M̂ (i)∥F ≲
√
r

max
i

√∑
j

Mij

 .

If we do not impose any structure on the model, the maximum likelihood (and least-squares)

estimate is M̂MLE = X , which has risk

E∥M − M̂MLE∥2F =
∑
i,j

var(Xij) =
∑
i,j

Mij.

If every row of M has approximately the same sum, estimators defined above improve on

M̂MLE (in squared Frobenius error) by a factor of approximately r/n. If the sums of the

rows of M differ significantly, the improvement is smaller. However, this should not be too

surprising — if the variance in the problem is already concentrated into a smaller sub-matrix,

we are effectively solving a smaller problem, and hence the low-rank assumption is less
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restrictive and, therefore, less beneficial.

The second term (of the form (1 − p)M2
ij) in the formula for σ̃ corresponds to the

inherent difficulty in estimating the values of a matrix due to the fact that we do not observe

every entry. This term in the lower bound applies regardless of the noise model, even when

there is no noise. This might seem to contradict existing exact noiseless matrix completion

results, but we note here that such results make stronger assumptions (incoherence of the

row and column spaces) beyond what we are assuming here. In fact, the matrices used in

the proof of Theorem 4 are highly coherent.

Although this second error term is necessary for general matrices, an interesting open

problem is whether it could be entirely removed (leaving only the variance term) when we

assume additional structure (such as incoherence) on the true rate matrix. Such a result

would be a bridge between existing noisy and noiseless matrix completion literature; the

existence of exact completion for the noiseless case implies that current results for the noisy

case (including this work) become highly suboptimal when the signal-to-noise ratio goes to

infinity. An exception is [5], but we note that this approach is not without its own drawbacks

as this approach leads to error rates which are suboptimal with respect to the rank r. More

recent work in this direction is [15, 16]; however, these results depend strongly on the

condition number of the true matrix, and their dependence on matrix rank seems suboptimal.

Thus there is still much work to do in analyzing noisy completion of incoherent matrices.

2.1.3 Summary of main results for multinomial denoising

We can also derive an interesting result on multinomial matrix denoising as a corollary of

our result on Poisson denoising. If P is a non-negative m× n matrix such that
∑

i,j Pij = 1,

and we independently sample N objects according to the probabilities contained in P , the

number of times each entry of P is sampled (which we can denote by an m × n count

matrix X) has a (matrix) multinomial distribution. Our results on Poisson denoising apply

by considering a multinomial distribution to be a vector of independent Poisson variables
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conditioned on its sum. Corollary 1 in Section 2.2.2 shows that if P has rank r, and none of

the row and column sums of P are too large, there is an estimator P̂ of P (which could be

defined similarly to any of the estimators above) such that

∥P̂ − P∥F ≲
√

r

N(m ∧ n)

One can easily check that, for the maximum likelihood estimator P̂MLE = X/N , E∥P̂MLE−

P∥2F ≈ N−1, so our result (approximately) reduces the squared error by a factor of r/(m∧n),

which is the effective rank deficiency.

For a more complete exploration of multinomial matrix denoising, we also consider

a model in which our observations are independent multinomial samples from rows of a

low-rank matrix. Concretely, our observations are now a matrix X whose rows, which we

denote {Xi}mi=1, are independent and distributed according to Xi ∼ Multinomial(pi, Ni),

where {pi}mi=1 are the rows of a rank-r m× n matrix P . Theorem 2 states that, under mild

conditions on the sums of columns of P , there is an estimator P̂ (defined similarly to those

above) such that, with high probability,

∥D1/2(P̂ − P )∥F ≲
√

r log(m+ n),

where D = diag(N1, . . . , Nm). It is easily checked that the maximum likelihood estimator

P̂MLE = D−1X has expected error E∥D1/2(P̂MLE−P )∥2F ≈ m, so we again get a reduction

in (squared) error that is (approximately, modulo a logarithmic factor) proportional to the

reduction in degrees of freedom.

We do not analyze the multinomial estimation problems from a minimax risk standpoint,

but, due to the similarities between the Poisson and multinomial distributions, we suspect

that one could find similar matching lower bounds in a similar manner to the Poisson case.
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2.1.4 Computation and implications for general noisy matrix completion

Note that all three of our estimators would be very easy to compute if we discarded the

nonnegativity constraint: we could take a singular value decomposition of the matrixA∗
Ω(X)

and then either do singular value soft thresholding (for M̂ (1) and M̂ (2)) or truncate it to the

r largest singular values (for M̂ (3)).

We claim that ignoring the nonnegativity constraint does not change our analysis or

the resulting error bounds at all; this constraint does not appear anywhere in the proof of

Theorem 1. Therefore, if computational ability is a limiting factor, we could simply take

the more efficient approach of solving without any nonnegativity constraints, and the error

bounds we have presented will still apply. Projecting the result onto any convex constraint

set that contains M can then only improve the performance.

We also note here that although we have chosen to focus on Poisson noise, our approach

is fairly general and could apply to other types of noise. Indeed, if M were an arbitrary

(not necessarily nonnegative) matrix, and we make observations of the form Mij + ξij for

(i, j) ∈ Ω, and the ξij’s are zero-mean noise variables with reasonably light tails, we could

adapt our arguments to show that, for each of our three estimators,

∥M − M̂∥F ≲
√

r

p

max
i

√∑
j

(var(ξij) + (1− p)M2
ij)

+ max
j

√∑
i

(var(ξij) + (1− p)M2
ij)

 .

The lower bound Theorem 4 is completely independent of the noise distribution; a version

of Theorem 3 could be proved for many common distributions.

This has some interesting implications for general matrix completion with noise. Many

of the existing algorithms, such as low-rank factorization [17], iterative imputation [18], or

the many other algorithms, including (Equation 2.1), that can be expressed as semidefinite

programs, are fairly complex. Our results suggest that, not only do simple SVD-based algo-
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rithms have theoretical properties that are just as good as current state-of-the-art guarantees

for more complex algorithms, but that, in a minimax error sense, it is impossible to do any

better.

This realization does not, however, imply that there is no value to more sophisticated

algorithms. As mentioned earlier, how well we can exploit incoherence in noisy matrix

completion remains an important open question, and the matrices used in the proof of the

minimax lower bound Theorem 4 are highly coherent. Therefore, it is likely that more

sophisticated algorithms are still beneficial when trying to recover non-pathological (i.e.,

incoherent) matrices.

2.1.5 Comparison to prior work

There are several categories of existing literature to which we can compare our results. Some

papers explicitly consider Poisson noise, using a maximum-likelihood framework. Cao and

Xie [19] consider nuclear-norm penalized maximum likelihood for matrices contained in a

nuclear norm ball (rather than exactly low-rank matrices). This approach uses an empirical

process argument to bound the Kullback-Leibler divergence between the true and predicted

distributions. This argument requires a Lipschitz condition on the log-likelihood function,

which, for the Poisson distribution, requires imposing a lower bound on the rates. Soni

et al. [20] and Soni and Haupt [21] consider a penalized maximum likelihood estimator

from a carefully-chosen finite set of candidates (which is exponentially large in the size

of the problem and hence computationally intractable). The matrices considered have a

non-negative low-rank factorization (with a particular emphasis on the case when one factor

is sparse). They use an information-theoretic argument to bound the expected error in terms

of Bhattacharyya distance. The result of [20], which applies to matrix completion, requires

imposing a lower bound on the rates, while that of [21], which considers only denoising,

does not. All three papers find an upper bound on Frobenius error in terms of the statistical

error metrics that they originally bound.
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Other, more general approaches, are designed specifically with Frobenius-norm error

in mind. One class of methods uses “restricted strong convexity” arguments, which were

introduced by Negahban and Wainwright [3]. These methods rely on approximating the

Frobenius norm in certain restricted classes of matrices (in which the error matrix must fall)

using only samples of the entries. These methods lead to simple and elegant proofs, but the

concentration inequalities on which they rely require imposing uniform upper bounds in

magnitude on both the true matrix entries and the estimator entries. Other recent papers

which use this type of argument include [22, 23, 24]. Another interesting paper which uses

learning theory arguments to achieve a similar result is [25].

We note in Section 2.1.4 that we can get our minimax optimal results with a simple

singular value truncation or thresholding. Other papers that analyze this algorithm include

[4] (which inspired our approach) as well as [26, 27, 28]. The paper [17] also analyzes

this as a first step in a more complicated factorization algorithm. These methods are very

simple and lend themselves to simple proofs. Our error rate in (Equation 2.5) is better in

that it applies to Poisson noise, has better dimension dependence (including eliminating

multiplicative log factors in the error rate), and/or has a more refined dependence on matrix

entries (e.g., row and column sums vs. absolute upper bounds on matrix entries).

An interesting blend of techniques can be seen in the papers [29, 30, 31], which combine

some of the general approaches mentioned above with maximum likelihood estimation for

exponential families of distributions. These methods, like those in [19] and [20], are difficult

to apply to the Poisson distribution without imposing a lower bound on rates because, as the

mean λ of the distribution goes to 0, the “natural parameter” log λ goes to −∞, whereas the

general methods used require parameters to be bounded. They also require (approximate)

low rank in the matrix of natural parameters. In the Poisson case, this is equivalent to

assuming a bound on the rank of the matrix [logMij] of elementwise logarithms of the

means, which is somewhat non-standard, and certainly not the same as bounding the rank of

the original matrix M .
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There is some previous work on the denoising problem in terms of Poisson or expo-

nential family principal component analysis (PCA). Papers in this area include [32], which

recommends maximum likelihood approaches; [33], which uses variational Bayesian in-

ference; and [34], which uses a singular value shrinkage algorithm on the means (much

like we do). The recent preprint [35] examines a variety of models with random scaling

factors and nonlinearities. These papers do not contain theoretical results applicable to our

problem, however. [34] is related to [36], which contains an asymptotic analysis of a similar

singular value shrinkage algorithm for more general problems (including matrix completion).

Another work in this area is [37], which contains consistency results for low-dimensional

subspace recovery.

Most of the papers mentioned above do not find error bounds which explicitly depend

on the “true” rate matrix; rather, they find uniform upper bounds for classes of structured

matrices with uniform upper (and, sometimes, lower) bounds on the entries. To compare our

results directly to this literature, we consider what we obtain when we only impose a uniform

upper and lower bounds (by, say λmax and λmin) on the matrix entries. The approximate

bound of (Equation 2.5) reduces to

∥M̂ −M∥2F ≲ (λmax + (1− p)λ2
max)

rm

p
,

where we have assumed, without loss of generality, that m ≥ n. Previous results show

similar error rates in terms of matrix dimensions for exactly low-rank matrices. For example,

[20] establishes a bound of

E∥M̂ −M∥2F ≲
λ3
max

λmin

rm

p
logm,

which provides a similar dependence on r, m, and p, but with an additional logarithmic

term and a worse dependence on the minimum and maximum matrix values. In a slightly

different setting, [19] shows that for matrices in the nuclear norm ball of radius λmax

√
rmn
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(which is a convex relaxation of the exact low-rank constraint), we instead obtain (ignoring

logarithmic terms and a complicated but severe dependence on λmax and λmin) an error

bound of

∥M̂ −M∥2F ≲

√
rnm
√
p

,

where p is now the number of samples for entry in a uniform-at-random sampling model.

The different dependence on r and p is interesting, but, if one compares it to results in

linear regression over ℓ1 balls (see, e.g., [38]), the rate given is perhaps not surprising. To

compare to some of the more general methods mentioned above, we note that, if we consider

the generalization of our method mentioned in Section 2.1.4, and we assume a uniform

upper bound on the magnitudes of matrix elements and the noise variances, our results are

comparable to [22] (albeit under less-strict assumptions).

As noted earlier, our work uses fairly general matrix completion methods. For the

Frobenius norm error metric, this gives us an advantage over more distribution-specific

approaches such as [19, 20, 29, 30], in part because we do not have to approximate the

Frobenius-norm error by a statistical divergence measure or by a norm in a transformed

parameter space. Our results also do not suffer from the fact that a Poisson distribution’s

likelihood function is ill-conditioned for very small rates. In addition, our results avoid a

multiplicative logarithmic factor that appears in much of the previous literature (replacing

it with an additive factor that is often negligible); this achievement (which also appears in

[22]) is almost entirely due to the use of recent results in bounding the operator norm of a

random matrix (such as [39]).

Finally, much of the previous literature in the Poisson case (from those mentioned above,

[29, 19, 20]) finds lower bounds on minimax risk in certain classes of matrices. The paper

[40] does the same for more general noise models (including a specialization to the Poisson

case). Although these lower bounds have the same large-scale error rate (in terms of the

rank and dimensions of the matrix and the number of samples) as the corresponding upper

bounds, they differ from the upper bounds by factors that are logarithmic in the problem size

23



and that depend on the ratio of largest to smallest allowable rates. To our knowledge, the

results in our work are the first for noisy low-rank matrix completion in which the minimax

rate for large classes of matrices is found to within a universal constant.

We are aware of much less theoretical work for low-rank denoising. One recent work

that is worth noting is [41]. This paper shows that, in the case of a matrix multinomial

distribution, one can achieve a tight error bound in ℓ1 distance (sum of absolute values of

entries) for certain factorizable probability matrices using O(mr4) samples. It is difficult to

compare this directly to our result, since it is in the much stronger ℓ1 norm, but we note that,

in a similar fashion as many of the results on Poisson observations, this paper also relies on

lower bounding certain sums of entries in the factor matrices. Other theoretical work on

topic modeling includes [42, 43, 44, 45, 46].

We add a final caveat to our results by noting that ∥M̂ −M∥F might not always be the

most appropriate error metric; for example, there is a much larger difference qualitatively

(and quantitatively, if we use an appropriate statistical divergence) between Poisson distri-

butions of means 0 and 10 than between Poisson distributions of means 100 and 110. We

see a similar disconnect between squared error and other probabilistic metrics in the case of

the multinomial distribution. Further investigation of distribution-specific methods (such

as maximum likelihood) that yield bounds in more statistically-motivated metrics is thus

certainly warranted.

2.1.6 Outline

The remainder of this chapter is organized as follows. Section 2.2 contains the formal

statements and proofs of our upper bounds on error. Section 2.3 contains the statements and

proofs of two separate minimax lower bounds which, when combined, yield the matching

lower bound to (Equation 2.5). Section 2.3.3 also discusses briefly some situations where

the approximation of (Equation 2.5) is accurate, and thus the upper and lower bounds match

within a universal constant.
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2.2 Upper bounds

2.2.1 Poisson noise

This section is dedicated to proving our main result, which is the following theorem:

Theorem 1. Let M be a non-negative m × n matrix with rank r. Let λmax = maxij Mij ,

and let

σ̃(M) = max
i

√∑
j

(Mij + (1− p)M2
ij) + max

j

√∑
i

(Mij + (1− p)M2
ij).

Suppose Ω ⊂ {1, . . . ,m} × {1, . . . , n} is chosen according to a Bernoulli sampling model

with sampling probability p, and suppose, conditionally on Ω, X ∼ Poisson(AΩ(M)). Set

ϵ ∈ (0, 1/2), and let

A(M, p, ϵ) = 2
√
pσ̃(M) + Cmax

{
λmax, 4 log

2mn

ϵ

}√
log

m ∨ n

ϵ
, (2.6)

where C is a universal constant.

Then, with probability at least 1− 2ϵ, if δ ≥ A(M, p, ϵ) and λ ≥ 2pA(M, p, ϵ), we also

have

∥M̂ (1) −M∥F ≤
4
√
2rδ

p

and

∥M̂ (2) −M∥F ≤
2
√
2rλ

p2
.

Moreover, we also have that with probability at least 1− 2ϵ,

∥M̂ (3) −M∥F ≤
2
√
2r

p
A(M, p, ϵ).

The result follows from a series of lemmas. The first steps in upper bounding the error

are the following (deterministic) results.
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Lemma 1. Suppose M is a rank-r matrix such that ∥A∗
Ω(X)− pM∥ ≤ δ = λ

2p
. Then, for

i ∈ {1, 2},

∥M̂ (i) −M∥F ≤
4
√
2rδ

p
=

2
√
2rλ

p2
. (2.7)

Lemma 2. Suppose M is a rank-r matrix. Then

∥M̂ (3) −M∥F ≤
2
√
2r

p
∥A∗

Ω(X)− pM∥.

Proof of Lemma 1. Let M = UΣV ∗ be the singular value decomposition of M , where

U ∈ Rm×r and V ∈ Rn×r are such that U∗U = V ∗V = Ir, and Σ is an r × r diagonal

matrix with positive entries on the diagonal. Let T be the subspace of Rm×n spanned by

matrices of the form UA and BV T for arbitrary matrices A ∈ Rr×n and B ∈ Rm×r. We

denote by PT and PT⊥ , respectively, the orthogonal projections onto T and its orthogonal

complement T⊥.

Denote H(1) = M̂ (1) −M . Because M is feasible, and the nuclear norm is a convex

function, we have

0 ≥ ∥M̂ (1)∥∗ − ∥M∥∗ ≥ ⟨H(1), Z⟩,

where Z ∈ ∂∥M∥∗ is any subgradient of the nuclear norm function at the point M . Such a

subgradient must have the form

Z = UV ∗ + PT⊥(W ),

where W is an arbitrary matrix with ∥W∥ ≤ 1. By the duality of the nuclear norm and

operator norm, we can choose W so that ⟨W,PT⊥(H(1))⟩ = ∥PT⊥(H(1))∥∗. We then have

0 ≥ ⟨H(1), UV ∗ + PT⊥(W )⟩

= ⟨PT (H(1)), UV ∗⟩+ ∥PT⊥(H(1))∥∗

≥ −∥PT (H(1))∥∗ + ∥PT⊥(H(1))∥∗,
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where the last inequality follows from the fact that ∥UV ∗∥ = 1. We therefore have

∥PT⊥(H(1))∥∗ ≤ ∥PT (H(1))∥∗.

Hence

∥H(1)∥∗ ≤ 2∥PT (H(1))∥∗

≤ 2
√
2r∥PT (H(1))∥F

≤ 2
√
2r∥(H(1))∥F ,

where the second inequality follows from the fact that any element of T has rank at most 2r.

By the triangle inequality and the homogeneity of the operator norm, we also have

∥H(1)∥ ≤ 2δ

p
.

Thus

∥H(1)∥2F = ⟨H(1), H(1)⟩

≤ ∥H(1)∥∥H(1)∥∗

≤ 4
√
2rδ

p
∥H(1)∥F ,

and the first part of the result immediately follows.

The proof of the second part is similar; letting H(2) = M̂ (2) −M , we now have, by the
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optimality of M̂ ,

0 ≥ ∥A∗
Ω(X)− pM̂ (2)∥2F + λ∥M̂ (2)∥∗ −

(
∥A∗

Ω(X)− pM∥2F + λ∥M∥∗
)

= p2∥M̂ (2)∥2F − p2∥M∥2F + 2p⟨A∗
Ω(X),M − M̂ (2)⟩+ λ

(
∥M̂ (2)∥∗ − ∥M∥∗

)
= p2∥M̂ (2)∥2F + p2∥M∥2F − 2p2⟨M̂ (2),M⟩+ 2p2⟨M, M̂ (2) −M⟩

− 2p⟨A∗
Ω(X), M̂ (2) −M⟩+ λ

(
∥M̂ (2)∥∗ − ∥M∥∗

)
= p2∥H(2)∥2F − 2p⟨A∗

Ω(X)− pM,H(2)⟩+ λ
(
∥M̂ (2)∥∗ − ∥M∥∗

)
.

Noting, as before, that ∥M̂ (2)∥∗ − ∥M∥∗ ≥ ∥PT⊥(H(2))∥∗ − ∥PT (H(2))∥∗, and that

|⟨A∗
Ω(X)− pM,H(2)⟩| ≤ ∥A∗

Ω(X)− pM∥∥H(2)∥∗ ≤
λ

2p
∥H(2)∥∗,

we have

∥H(2)∥2F ≤
λ

p2
(∥H(2)∥∗ + ∥PT (H(2))∥∗ − ∥PT⊥(H(2))∥∗)

≤ 2λ

p2
∥PT (H(2))∥∗

≤ 2
√
2rλ

p2
∥H(2)∥F .

Proof of Lemma 2. Because both M and M̂ (3) have rank at most r, H(3) = M̂ (3) −M has

rank at most 2r. By a similar calculation to that in the proof of Lemma 1, the optimality of

M̂ (3) implies

0 ≥ ∥A∗
Ω(X)− pM̂ (3)∥2F − ∥A∗

Ω(X)− pM∥2F

= p2∥H(3)∥2F − 2p⟨A∗
Ω(X)− pM,H(3)⟩,
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so

∥H(3)∥2F ≤
2

p
|⟨A∗

Ω(X)− pM,H(3)⟩|

≤ 2

p
∥A∗

Ω(X)− pM∥∥H(3)∥∗

≤ 2
√
2r

p
∥A∗

Ω(X)− pM∥∥H(3)∥F .

The remainder of the work is to show that ∥A∗
Ω(X)−pM∥ ≤ A(M, p, ϵ) with probability

at least 1− 2ϵ. We will use the following fundamental lemma, which was originally proved

by Bandeira and van Handel [39] and appears with a slightly improved constant in [47].

Lemma 3 (Theorem 4.9 and Remark 4.11 in [47]). Let X be a random m × n matrix

whose entries are independent, centered, and almost surely bounded in absolute value by a

constant b. Let

σ = max
i

√∑
j

EX2
ij +max

j

√∑
i

EX2
ij.

Then

P(∥X∥ ≥ 2σ + t) ≤ (m ∨ n) exp

(
− t2

C0b2

)
,

where C0 is a universal constant.

Poisson random variables are clearly unbounded, so Lemma 3 does not directly apply.

The following technical lemma allows us to extend the result to the case of random variables

with sub-exponential tails.

Lemma 4. Let X be a random m× n matrix whose entries are independent and centered,

and suppose that for some v, t0 > 0, we have, for all t ≥ t0,

P(|Xij| ≥ t) ≤ 2e−t/v.
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Let ϵ ∈ (0, 1/2), and let

K = max

{
t0, v log

2mn

ϵ

}
.

Then

P

(
∥X∥ ≥ 2σ +

ϵv√
mn

+ t

)
≤ (m ∨ n) exp

(
− t2

C0(2K)2

)
+ ϵ,

where σ and C0 are the same as in Lemma 3.

Proof. First, note that, by a union bound,

P

(
max
i,j
|Xij| > K

)
≤ 2mne−K/v ≤ ϵ.

Consider the truncation XK = [XK
ij ], where XK

ij = Xij1{|Xij |≤K}. Note that

|EXK
ij | ≤ E|XK

ij −Xij|

= E|Xij|1{|Xij |>K}

=

∫ ∞

K

P(|Xij| > t) dt

≤
∫ ∞

K

2e−t/v dt

= 2ve−K/v

≤ ϵv

mn

≤ K.

Let X̃K = XK − EXK be the centered version of XK . Clearly, E(X̃K
ij )

2 ≤ EX2
ij , and

|X̃K
ij | ≤ 2K. Then, by Lemma 3,

P(∥X̃K∥ ≥ 2σ + t) ≤ (m ∨ n)e−t
2/C0(2K)2 .
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Furthermore, with probability at least 1− ϵ,

∥X∥ = ∥XK∥

≤ ∥X̃K∥+ ∥EXK∥

≤ ∥X̃K∥+ ∥EXK∥F

≤ ∥X̃K∥+ ϵv√
mn

,

and the result follows.

To apply this result, we need a subexponential tail bound for the Poisson distribution.

Lemma 5. Let X ∼ Poisson(λ). Then

P(X − λ ≥ t) ≤ exp

(
− t2

2(λ+ t/3)

)
.

For t ≥ λ,

P(X − λ ≥ t) ≤ e−3t/8.

The first inequality can be established by approximating the Poisson distribution with

mean λ as the sum of k Bernoulli random variables with mean λ/k, applying Bernstein’s

inequality, and taking k →∞. The idea for this argument was suggested by an exercise in

[48].

Going back to our original problem, we need to bound the operator norm of Z =

A∗
Ω(X)− pM . Note that since we are using a Bernoulli sampling model, the entries of Z

are independent. Let λmax = maxi,j Mij . Note that for every (i, j), EZij = 0,

Zij ≥ −pMij ≥ −λmax,
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and, for t ≥ 2λmax,

P(Zij ≥ t) ≤ e−3(t−λmax)/8 ≤ e−3t/16 ≤ e−t/8.

Then, by Lemma 4, we have, for ϵ ∈ (0, 1/2),

P

(
∥Z∥ ≥ 2σ +

8ϵ√
mn

+ t

)
≤ (m ∨ n) exp

(
− t2

C0(2K)2

)
+ ϵ,

where

K = max

{
2λmax, 8 log

2mn

ϵ

}
,

and σ is defined as before. To calculate σ in terms of p and M , we note that

var(Zij) = p var(Xij) + p(1− p)(EXij)
2

= pMij + p(1− p)M2
ij.

Therefore, we can calculate

σ = max
i

√∑
j

(pMij + p(1− p)M2
ij) + max

j

√∑
i

(pMij + p(1− p)M2
ij) =

√
pσ̃.

Taking t = C1K
√
log m∨n

ϵ
, we have, with probability at least 1− 2ϵ,

∥Z∥ ≤ 2
√
pσ̃ +

8ϵ√
mn

+ C1K

√
log

m ∨ n

ϵ
.

We take this as our A(M, p, ϵ), subsuming the 8ϵ√
mn

term into the last term.

2.2.2 Corollary on multinomial estimation

Here we prove a corollary of Theorem 1, showing how it implies a result for estimating the

low-rank-matrix parameter of a matrix multinomial distribution. For the sake of brevity, we
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only consider the analogue of M̂ (1).

Corollary 1. Let P be a nonnegative m × n matrix with rank r such that
∑

i,j Pij = 1.

Suppose, furthermore, that we have

max
i

∑
j

Pij ≤
a

m
,max

j

∑
i

Pij ≤
b

n

for some constants a, b ≥ 1, and that maxi,j Pij ≤ c. Let N be a positive integer, and

suppose that X ∼ Multinomial(P,N). Let ϵ ∈ (0, 1), choose δ > 0 such that

δ ≥ 1

N

(
2

√
N

(
a

m
+

b

n

)
+

4ϵ

e
√
mnN

+ Cmax

{
Nc, 4 log

4emn
√
N

ϵ

}√
log

2e
√
N(m ∨ n)

ϵ

 ,

and let

P̂ δ(X) = arg min
P ′∈[0,1]m×n∑

i,j Pij=1

∥P ′∥∗ s.t. ∥X −NP ′∥ ≤ Nδ.

Then, with probability at least 1− ϵ,

∥P̂ δ − P∥F ≤ 4
√
2rδ.

As in the Poisson case, there are many situations where the additive logarithmic term in

the definition of δ is negligible, and we have

∥P̂ δ − P∥F ≲

√
r

N

(
a

m
+

b

n

)
.

Proof of Corollary 1. Suppose Y ∼ Poisson(NP ). Let ϵ′ = ϵ/2e
√
N . Define the event

A = {∥P̂ δ(Y )− P∥F ≤ 4
√
2rδ}. Theorem 1 (with p = 1) implies that P(A) ≥ 1− 2ϵ′ =

1− ϵ/e
√
N . Note that the additional constraints in the optimization problem do not affect
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this fact, since P , by definition, meets these constraints.

X has the same distribution as Y conditioned on B = {
∑

i,j Yij = N}, so it suffices to

show that the probability of A conditioned on this event is at least 1− ϵ. Indeed, note that∑
i,j Yij ∼ Poisson(N), so

P(B) =
e−NNN

N !
≥ 1

e
√
N

by Stirling’s approximation. Then, by Bayes’ rule,

P(∥P̂ δ(X)− P∥F ≥ 4
√
2rδ) = P(Ac | B)

=
P(Ac ∩B)

P(B)

≤ P(Ac)

P(B)

≤ 2ϵ′e
√
N

= ϵ

2.2.3 Multinomial denoising with independent rows

We now consider a slightly different setting for multinomial estimation. Here, we consider a

model in which we observe a collection of independent multinomial random variables, each

of which has distribution parametrized by a row in a low-rank matrix.

Theorem 2. Let X1, . . . , Xm be independent multinomial random vectors, with

Xi ∼ Multinomial(pi, Ni),

where, for each i, Ni ≥ 1 is an integer, and pi = (pi1, . . . , pin) is a vector of probabilities.
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Denote the matrices

X =


X1

...

Xm

 ∈ Rm×n, P =


p1
...

pm,

 ∈ Rm×n, D =


N1

. . .

Nm

 ∈ Rm×m,

where each Xi and pi are considered row vectors. Define the estimator

P̂ δ = arg min
P ′∈[0,1]m×n

∥D1/2P ′∥∗ s.t. ∥D−1/2(X −DP ′)∥ ≤ δ,
∑
j

Pij = 1 ∀i ∈ {1, . . . ,m}.

Let Dmin = miniDi, and choose δ such that

δ ≥ max

2

√√√√max

{
1,max

j

∑
i

pij

}
log

m+ n

ϵ
,

4

3
√
Dmin

log
m+ n

ϵ

 .

Then, with probability at least 1− ϵ,

∥D1/2(P̂ δ − P )∥F ≤ 4
√
2rδ,

where r is the rank of P .

Our approach uses the following matrix Bernstein inequality.

Lemma 6 ([49, Theorem 6.1.1]). Suppose Z =
∑

k Sk ∈ Rm×n, where {Sk}k is a finite

sequence of independent, zero-mean random matrices. Suppose that for some constant

L > 0, for each k, ∥Sk∥ ≤ L almost surely. Let

v = max{∥EZZT∥, ∥EZTZ∥} = max

{∥∥∥∥∥∑
k

ESkS
T
k

∥∥∥∥∥,
∥∥∥∥∥∑

k

ESTk Sk

∥∥∥∥∥
}
.

Then, for t ≥ 0,

P(∥Z∥ ≥ t) ≤ (m+ n) exp

(
−t2

2(v + Lt/3)

)
.
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Proof of Theorem 2. On the event that ∥D−1/2(X−DP )∥ ≤ δ, we have ∥D1/2(P̂ δ−P )∥ ≤

2δ, and the result follows by the same steps as in the proof of Theorem 1.

To find a bound on the operator norm of Z = D−1/2(X − DP ), we apply Lemma 6,

noting that Z is the sum of independent, zero-mean matrices:

Z =
m∑
i=1

Di∑
k=1

1√
Di

ei(uik − pi)
T ,

where ei is the ith standard basis element in Rm, uik is a random vector in Rn that is equal

to ej with probability pij (and all of the uik’s are independent), and pi = (pi1, . . . , pin) is

the ith row of P .

One can verify that

EZZT = diag

(
n∑
j=1

p1j(1− p1j), . . . ,
n∑
j=1

pmj(1− pmj)

)
⪯ Im,

where Im denotes the m×m identity matrix, and that

EZTZ =
m∑
i=1

diag(pi)− pip
T
i ⪯ diag

(
m∑
i=1

pi1(1− pi1), . . . ,
m∑
i=1

pin(1− pin)

)
.

We can then take v ≤ max{1,maxj
∑

i pij}. Clearly, each term in the sum has operator

norm bounded above by L = 1/
√
Dmin.

Some algebraic manipulation of the result of Lemma 6 implies that, for ϵ ∈ (0, 1), we

have, with probability at least 1− ϵ,

∥Z∥ ≤ max

{
2

√
v log

m+ n

ϵ
,
4L

3
log

m+ n

ϵ

}

≤ max

2

√√√√max

{
1,max

j

∑
i

pij

}
log

m+ n

ϵ
,

4

3
√
Dmin

log
m+ n

ϵ

 ,

which establishes the result.
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2.3 Minimax lower bounds

In this section, we show that the rate in (Equation 2.5) is optimal (within a multiplicative

constant) in the sense of minimax risk. We do this in two parts; the two minimax lower

bounds derived in the next two sections, when combined, match the rate in (Equation 2.5) is

optimal.

2.3.1 First lower bound

In the Poisson upper error bound, σ̃ is partially determined by the maximal row and column

sums of the rate matrix M , which we can think of as the maximal variance of any row or

column (without sampling a subset of the entries). Our first lower bound shows that we

cannot improve on this term:

Theorem 3. Let r, k, and ℓ, be positive integers, and take m = rk, n = rℓ. Let λmax ≥

1/8ℓp, set σ2
1 = kλmax, and let

S =

M ∈ [0, λmax]
m×n : rank(M) ≤ r,

√
max
i

∑
j

Mij +

√
max
j

∑
i

Mij ≤ 2σ1

 .

Then, under a Bernoulli sampling model with sampling probability p,

inf
M̂

sup
M∈S1

PM

(
∥M̂ −M∥F ≥

√
rσ1

8
√
2p

)
≥ 1

2
− 8 log 2

m ∨ n
.

Proof. Assume, without loss of generality, that k ≥ ℓ. We use a variant of Fano’s method.

We first find a large hypercube of matrices, and then we use the fact that we can find a large

subset that is well-separated.
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For i ∈ {1, . . . ,m}, let

Ai = {ℓ(q − 1) + 1, . . . ℓq},

where q ∈ {1, . . . , r} is the unique integer such that i ∈ {k(q − 1) + 1, . . . , kq}. For λ0, λ1

to be chosen later, we define, for θ ∈ {0, 1}m, the block-diagonal matrix Mθ ∈ S by

(Mθ)ij =


λθi , j ∈ Ai,

0, otherwise.

The nonzero elements of the ith row of Mθ are all either λ0 or λ1, depending on the value of

θi.

By a combinatorial argument (see, e.g., [50]), one can show that there exists Θ ⊂

{0, 1}m such that card(Θ) ≥ em/8 and, for all distinct θ, θ′ ∈ Θ, the Hamming distance

dH(θ, θ
′) ≥ m/4.

Take λ0 = λmax/2 − δ and λ1 = λmax/2 + δ, where δ ≤ λmax/2 is a constant to be

chosen later. Note that for all distinct θ, θ′ ∈ Θ, we have

∥Mθ −Mθ′∥F ≥
√
mℓδ.

We denote by Pθ the distribution ofPΩ(X) when X ∼ Poisson(Mθ), and Ω is independently

chosen from the Bernoulli sampling model with parameter p. From Fano’s inequality from

information theory, one can derive (see, e.g., [50]) a lower bound on the probability of an
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estimator’s error exceeding half the distance between points indexed by Θ:

inf
M̂

sup
M∈S

PM

(
∥M̂ −M∥F ≥

√
mℓδ

2

)
≥ pe

:= inf
ϕ
sup
θ∈Θ

P(ϕ(PΩ(X)) ̸= θ)

≥ 1− supθ∈ΘDKL(Pθ ∥Q) + log 2

log card(Θ)
,

where ϕ denotes a test taking values in Θ, and Q is any probability distribution on Rm×n.

We take Q to be the distribution generated in the same manner as each Pθ, simply with λ1

and λ2 replaced by λmax/2.

Note that the Kullback-Leibler divergence between two Poisson distributions with rates

λ and λ′ is

DKL(λ ∥ λ′) = λ′ − λ+ λ log
λ

λ′

≤ λ′ − λ+ λ

(
λ

λ′ − 1

)
=

(λ− λ′)2

λ′ .

Therefore, for any θ ∈ Θ,

DKL(Pθ ∥Q) ≤ rkℓp
δ2

λmax/2

= mℓp
2δ2

λmax

.

Take

δ =

√
λmax

32ℓp
≤ λmax

2
.

Then

pe ≥
1

2
− 8 log 2

m
,
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and half the separation between points indexed by Θ is at least

√
mℓδ

2
=

1

8
√
2

√
mλmax

p
=

1

8
√
2

√
r

p
σ1.

2.3.2 Second lower bound

The previous theorem relies on the fact that the observations are conditionally Poisson. The

next result, which provides the second part of a matching lower bound to (Equation 2.5),

does not depend on the conditional distribution of the observations, and instead shows a

fundamental limit in inferring missing matrix entries.

Theorem 4. Take again m = rk, n = rℓ. Set σ2
2 = kλ2

max. Let

S =

M ∈ [0, λmax]
m×n : rank(M) ≤ r,

√
max
i

∑
j

M2
ij +

√
max
j

∑
i

M2
ij ≤ 2σ2

 .

Suppose p ≥ 1
2(k∧ℓ) =

r
2(m∧n) . Then, under a Bernoulli sampling model with probability p

(with any conditional distribution on the observations),

inf
M̂

sup
M∈S2

E∥M̂ −M∥2F ≥
rσ2

2

8
max

{
1

2

⌊
1

2p

⌋
, 1− p

}
≥ 1

64

1− p

p
rσ2

2.

Proof. Again, we assume that k ≥ ℓ. We first prove the lower bound with the first item in

the maximum. For notational simplicity, we can assume that 1/2p is an integer. Furthermore,

we can assume that ℓ = 1/2p, since decreasing the number of columns does not increase

risk.

We consider a set of matrices {Mθ}θ∈{0,1}m with the same structure as in the proof of

Theorem 3, but now, we take λ0 = 0, λ1 = λmax.
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Assouad’s lemma (see, e.g., [51] or [50]) gives a lower bound on the Bayes risk of an

estimator M̂ for a uniform prior on {0, 1}m:

R(M̂) :=
1

2m

∑
θ∈{0,1}m

Eθ∥M̂ −Mθ∥2F

≥ 1

2

m∑
i=1

ℓλ2
max

4
inf
ϕ
(Pθ(ϕ ̸= θi) + Pθi(ϕ ̸= 1− θi)) ,

where ϕ : Rm×n → {0, 1} is a test, and, for θ ∈ {0, 1}m, θi denotes the element of {0, 1}m

that is equal to θ except in the ith position.

Denote by P i
θ the marginal distribution of the ith row of a matrix with distribution Pθ.

The minimal testing risk which appears in the sum is equal to the L1 norm of the minimum

of the densities of P i
θ and P i

θi , which measures how much the distributions overlap. Thus

we have

inf
ϕ
(Pθ(ϕ ̸= θi) + Pθi(ϕ ̸= 1− θi)) = ∥Pθ ∧ Pθi∥1

≥ (1− p)ℓ

≥ 1− ℓp

=
1

2
,

where the first inequality is due to the fact that, with probability (1− p)ℓ, no entry from the

ith row of M is observed.

Then

R(M̂) ≥ mℓλ2
max

16
=

rσ2
2

32p
.

The result follows from the fact that minimax risk always exceeds Bayes risk.

A simple modification with ℓ = 1 yields the result for the second term in the maximum.

We note here that we could also use a similar argument as in the proof of Theorem 3
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to get a high-probability lower bound on error (with a somewhat worse constant). For

example, setting Q =
P(0,...,0)+P(1,...,1)

2
, it is easily verified that the resulting Kullback-Leibler

divergences DKL(Pθ ∥Q) can be upper bounded by a sum of coordinate-wise total variation

distance.

2.3.3 When do the upper and lower bounds match?

Within multiplicative constants, the lower bounds of Theorems 3 and 4 match the approxi-

mate upper bound of (Equation 2.5). We must therefore consider when the approximation

in (Equation 2.5) is accurate.

Finding technical conditions that guarantee matching rates is not something we think

likely to be very instructive at this point, especially since a different proof technique could

potentially change the logarithmic term in A(M, p, ϵ)). However, we think it is helpful to

look at the matrices involved in the proofs of Theorems 3 and 4. Note that when the bounds

match for those particular matrices, the minimax error rate bounds are tight for the matrix

classes considered in those proofs.

For these matrices (assuming that m ≥ n),

σ̃ ≈
√

m

r
(
√

λmax +
√
1− pλmax).

For this term to dominate (Equation 2.6), we must have

σ̃ ≳
λmax ∨ c logm

√
p

√
logm.

For example, if λmax ≥ logm, it would suffice to take

p ≳
r logm

m
,

which is a standard condition in noiseless matrix completion. If λmax ≤ logm, it would
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suffice to take

p ≳
r log3m

mλ2
max

.

2.4 Conclusion and future work

In this chapter, we have derived an upper bound in Frobenius norm error for an estimator

for Poisson matrix completion, and we have derived a minimax lower bound that matches

this upper bound (within a universal constant) for many classes of nonnegative rate matrices.

We have also derived similar upper bounds for error in two types of multinomial matrix

denoising problems. The estimators we use are computationally tractable, and require sig-

nificantly fewer assumptions on the underlying matrix than previous results in the literature.

Significantly, we impose no lower bounds on the entries of the underlying matrix. This is

crucial in many applications (such as topic modelling) where zero or very small means can

be relatively common.

Because we have found upper and lower error bounds in Frobenius norm, the only

theoretical improvement remaining for this model and error metric in general classes of

matrices is to try to relax the conditions under which the bounds match (although, as we

have seen, they are not too restrictive now). This could potentially come about by reducing

the logarithmic term in (Equation 2.6) and/or by finding a logarithmic term to add to the

minimax lower bounds. One could also further examine how to obtain better error rates for

more restrictive classes of matrices, such as incoherent matrices.

It would also be interesting to extend the results presented here to matrices that are not

exactly low-rank, but are instead “approximately low-rank”; for example, we could consider

matrices which are contained in Schatten balls (which, for q ∈ [0, 1], are sets of matrices

for which
∑

i σ
q
i ≤ R, where {σi} is the set of singular values). As mentioned previously,

Cao and Xie [19] used the Schatten 1-norm (q = 1, or nuclear norm ball); Negahban and

Wainwright [3] also examined these classes of matrices.

Another avenue of research would be to examine structured Poisson or multinomial

43



estimation under different, more statistically motivated error metrics. Maximum likelihood

methods seem more suitable here than least-squares, but analysis of maximum likelihood

estimators has proved difficult for the reasons outlined in Section 2.1.5. It is not clear what

kind of structure would be relevant in a different error metric. Low-rank structure seems

to work well with a least-squares error framework, but there is a priori not much reason to

think that it would work similarly well for another metric; for example, the Bhattacharyya

distance between Poisson distributions, is proportional to the (squared) ℓ2 distance between

the square roots of the rates, but the element-wise square root of a low-rank matrix is not, in

general, low rank. Thus, this approach may not immediately bear much fruit. However, an

analysis of matrix estimation under alternative error metrics remains an important area for

future research.
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CHAPTER 3

OPTIMAL CONVEX LIFTED SPARSE PHASE RETRIEVAL AND PCA WITH AN

ATOMIC MATRIX NORM REGULARIZER

In this chapter,1 we present novel analysis and algorithms for solving sparse phase retrieval

and sparse principal component analysis (PCA) with convex lifted matrix formulations.

The key innovation is a new mixed atomic matrix norm that, when used as regularization,

promotes low-rank matrices with sparse factors. We show that convex programs with

this atomic norm as a regularizer provide near-optimal sample complexity and error rate

guarantees for sparse phase retrieval and sparse PCA. While we do not know how to solve the

convex programs exactly with an efficient algorithm, for the phase retrieval case we carefully

analyze the program and its dual and thereby derive a practical heuristic algorithm. We

show empirically that this practical algorithm performs similarly to existing state-of-the-art

algorithms.

3.1 Introduction

3.1.1 Sparsity, phase retrieval, and PCA

Consider the standard linear regression problem in which we make observations of the form

yi = ⟨xi, β∗⟩+ ξi, i = 1, . . . , n, where x1, . . . , xn are measurement vectors and ξ1, . . . , ξn

represent noise or other error. If the xi’s are chosen randomly and independently (e.g., i.i.d.

Gaussian), and the noise is zero-mean and independent with var(ξi) ≤ σ2, it is well-known

that in general, we need2 n ≳ p measurements to estimate β∗ meaningfully, and the best

possible error we can obtain is ∥β̂ − β∗∥2 ≲ σ
√

p/n.

We can potentially do much better if we exploit sparsity in the vector β∗. If β∗ has

1This work is available as a preprint in [52],
2Here and throughout the chapter, ≲ and ≳ denote, respectively, ≤ and ≥ within absolute constants.
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(at most) s nonzero entries, the standard LASSO algorithm, which requires solving an ℓ1-

regularized least-squares optimization problem, yields an estimator β̂ satisfying ∥β̂−β∗∥2 ≲

σ
√

(s/n) log(p/s) as long as the number of measurements satisfies n ≳ s log(p/s) (see,

e.g., [53, Chapter 10]). Thus by using a convex regularized optimization problem we

can exploit sparsity to reduce the number of measurements n and the estimation error

proportionally to sparsity level (i.e., the number of nonzero entries in β∗). In this work, we

seek to extend this phenomenon to two problems: phase retrieval and principal component

analysis (PCA). To introduce our main results, we briefly describe phase retrieval and PCA

and their sparse variants. We focus on the formulations most relevant to our results. More

complete background and related literature can be found in Sections 3.1.2 and 3.1.3.

In phase retrieval, we seek to estimate a vector β∗ from n noisy quadratic observations of

the form yi = |⟨xi, β∗⟩|2 + ξi. The nonlinearity in the measurement model makes estimation

and analysis more complicated than if our measurements are linear. To get around this, a

common approach is to note that for any x, β ∈ Rp, |⟨x, β⟩|2 = ⟨X,B⟩HS, where X = x⊗x

and B = β ⊗ β are rank-1 positive semidefinite (PSD) matrices, and ⟨·, ·⟩HS denotes the

Hilbert-Schmidt (Frobenius) matrix inner product. We can then write our observations as

the linear measurements yi = ⟨Xi, B
∗⟩HS + ξi, where B∗ = β∗ ⊗ β∗ and Xi = xi ⊗ xi.

This is often called a “lifted” formulation, since we are mapping the parameter of interest

from Rp to the larger space of p × p PSD matrices. If the xi’s are randomly chosen (say,

Gaussian), and we solve the semidefinite program

B̂ = arg min
B⪰0

1

2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)
2,

we can bound ∥B̂ −B∗∥HS ≲ σ
√

p/n as long as n ≳ p, where σ is the standard deviation

of the ξi’s. (As shown in [54], this implies that the leading eigenvector of B̂ is close to β∗

up to its sign.) Both the sample complexity and the error rate are comparable to those in

ordinary linear regression.
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In PCA, we observe n i.i.d. random vectors {xi}ni=1, and we want to estimate the leading

eigenvector v1 of the covariance matrix Σ = E(x1 ⊗ x1). Again, this can be solved in a

lifted manner with a semidefinite program, noting that

P1 := v1 ⊗ v1 = arg max
P∈Rp×p

⟨Σ, P ⟩HS s.t. ∥P∥∗ ≤ 1.

An estimator P̂ of P1 is obtained3 by replacing Σ with the empirical covariance Σ̂. Again, if

n ≳ p, we can recover P1 within error proportional to
√
p/n (where the constants depend

on the gap between the first and second leading eigenvalues of Σ).

Sparse phase retrieval seeks to combine phase retrieval with sparse recovery. If β∗ is

s-sparse, and we observe yi = |⟨xi, β∗⟩|2 + ξi for i ∈ {1, . . . , n}, can we recover β∗ with a

similar sample complexity and error as in linear sparse recovery? Similarly, the question we

consider in sparse PCA is whether, if the leading eigenvector v1 is s-sparse, we can recover

it with a similar sample complexity and error as in linear recovery.

Our main contributions are the following:

• We present novel convex relaxations of the sparse phase retrieval and sparse PCA

problems that use both a lifted formulation and a sparsity-inducing regularization,

and we prove that for both problems, an estimator computed via a convex program

achieves O(s log(p/s)) sample complexity and O(σ
√

(s/n) log(p/s)) error rate as in

linear sparse recovery.

• Although we do not know how to compute the convex programs exactly (we suspect

they may, in fact, be computationally intractable), we present a heuristic motivated by

a careful analysis of the dual problem and the problem’s optimality conditions, and we

show that in the case of sparse phase retrieval, the resulting algorithm achieves nearly

identical empirical performance to existing state-of-the-art sparse phase retrieval

algorithms.
3It would be computationally suboptimal in practice to compute the leading eigenvector of Σ̂ with a

semidefinite program, but this formulation helps motivate our approach to the sparse case.
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In the following sections, we describe the sparse phase retrieval and sparse PCA problems

in more detail, and we review the related literature.

3.1.2 Sparse phase retrieval

Phase retrieval in p dimensions with (sub-)Gaussian measurements is by now well-studied. If

we have n observations of the form yi ≈ |⟨xi, β∗⟩|2, we can solve the optimization problem

β̂ = arg min
β∈Rp

n∑
i=1

(yi − |⟨xi, β∗⟩|2)2. (3.1)

Unfortunately, this is a nonconvex problem, so there is no immediately obvious way to solve

it efficiently. (A similar optimization problem and similar nonconvexity appear if we instead

write our measurements without the square, i.e., our observations are ≈ |⟨xi, β∗⟩|.)

Most approaches to this algorithmic difficulty fall into one of two categories. One method

is to optimize a nonconvex loss function such as (Equation 3.1) directly (and iteratively) with

a suitable initialization (e.g., [55]). The other is the lifted semidefinite approach outlined

in Section 3.1.1. For example, Candès and Li [56] show that if the design vectors xi are

Gaussian, yi = |⟨xi, β∗⟩|2 + ξi, and we have n ≳ p measurements, solving

B̂ = arg min
B⪰0

n∑
i=1

|yi − ⟨Xi, B⟩HS|

achieves ∥B̂ −B∗∥F ≲ 1
n

∑n
i=1|ξi| with high probability. In the case of zero-mean random

noise with standard deviation σ, we can, by using a squared loss, improve this to ∥B̂ −

B∗∥F ≲ σ
√
p/n (see [57]). Thus we can solve the phase retrieval problem with a sample

complexity and susceptibility to noise proportional to the dimension p; this is the same

complexity as ordinary linear regression.

Several results have been published on how to adapt iterative nonconvex phase retrieval

algorithms to the sparse setting [58, 59, 60, 61, 62, 63]. Some [59, 62] do indeed achieve

O(σ
√

(s/n) log p) error bounds with zero-mean noise—this is very close to the optimal
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rate in linear sparse recovery (the rest do not analyze theoretically the noisy case). However,

the theory in this literature requires n ≳ s2 log p, which, unless s is very small, is much

larger than what is required in linear sparse recovery. As Soltanolkotabi [64] points out, the

key difficulty is finding a good initialization for the algorithms—once we are close enough

to β∗, we only need4 n ≳log s measurements to converge to a correct estimate. In practice,

the first initialization step is often to estimate the support of β∗; the best known methods

require n ≳log s2 measurements. We compare several of these algorithms (in addition to

that of the purely algorithmic/empirical work [65]) to ours empirically in Section 3.4.3, and

we see that all of them appear empirically to have linear sample complexity in s.

More related to our results are methods to adapt the lifted convex phase retrieval approach

to the sparse setting. The foundational theoretical work in this area is by Li and Voroninski

[66], although the method was previously studied empirically in [67]. The key idea is that if

β∗ ∈ Rp is s-sparse, the lifted version B∗ = β∗ ⊗ β∗ is both rank-1 and at most s2-sparse.

In the noiseless case, they solve the optimization problem

B̂ = arg min
B⪰0

λ1 tr(B) + λ2∥B∥1,1 s.t. ⟨Xi, B⟩HS = yi, i = 1, . . . , n, (3.2)

where ∥·∥1,1 denotes the elementwise ℓ1 norm of a matrix. The trace regularization term

promotes low rank, while the ℓ1 norm promotes sparsity. As with the nonconvex methods,

their theory requires n ≳ s2 log p measurements to get exact recovery. The result of [57],

when specialized to sparse phase retrieval, extends this approach to the noisy case, getting,

within log factors, the same O(s2) sample and noise complexity.

3.1.3 Sparse PCA

PCA is a well-established technique with which, given points x1, . . . , xn ∈ Rp, we try to

find a low-dimensional linear (or affine) subspace that contains most of the energy in the data.

If x1, . . . , xn have zero empirical mean (e.g., after centering), the closest r-dimensional

4Here and hereafter, ≳log (≲log) will denote “greater (less) than within a logarithmic factor.”

49



subspace to the points (in mean square ℓ2 distance) is the space spanned by the top r

eigenvectors of the empirical covariance matrix Σ̂ = 1
n

∑n
i=1 xi ⊗ xi.

For simplicity, take r = 1. Suppose the xi’s are i.i.d. copies of a random variable x with

true covariance Σ with eigenvalue decomposition Σ =
∑

ℓ σℓvℓ ⊗ vℓ, where σ1 > σ2 ≥

· · · ≥ σp. If x is Gaussian, and σ2 ≳
σ1
p−1

, then, with high probability [68],

∥Σ̂− Σ∥2 ≲
√

σ1
σ1 + (p− 1)σ2

n
≲

√
σ1σ2

p

n
.

Then, if v̂1 is the leading eigenvector of Σ̂, the Davis-Kahan sinΘ theorem gives

∥v̂1 ⊗ v̂1 − v1 ⊗ v1∥2 ≲
√
σ1σ2

σ1 − σ2

√
p

n
.

This rate is minimax-optimal over general covariance matrices with the given σ1, σ2 (see

[69]).

When p is large compared to n, we need to impose more structure on Σ to recover

the leading eigenvector(s) accurately. In sparse PCA, we consider the case in which the

eigenvector(s) of interest are sparse. This problem has been extensively studied in the past

decade: see [70] for a recent review.

In the single-eigenvector recovery case (r = 1), Cai et al. [71] show that if the leading

eigenvector v1 is s-sparse, the minimax rate for all estimators v̂1 of v1 over the simple class

{Σ = σ2Ip + (σ1 − σ2)v1 ⊗ v1 : v1 s-sparse, ∥v1∥2 = 1} is

∥v̂1 ⊗ v̂1 − v1 ⊗ v1∥2 ≈
√
σ1σ2

σ1 − σ2

√
s log(p/s)

n
.

While this theoretical result is clean and achieves our desire to bring sparse-recovery

sample complexity and error to the PCA problem, one practical problem remains: how do

we compute an estimator v̂1 that achieves these theoretical properties? As with sparse phase

retrieval, the best theoretical results for computationally efficient algorithms require n ≳log
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s2 to guarantee accurate recovery (see, e.g., [71, 72]). Once again, proper initialization

(often by estimating the support of v1) is the key difficulty.

There is strong evidence to suggest that this s2 barrier may be intrinsic for computa-

tionally efficient algorithms. Recent results suggest that any statistically optimal estimator

that requires fewer measurements must be NP-hard to compute. Berthet and Rigollet [73]

showed that if a certain testing problem in random graph theory (the planted clique problem)

is NP-hard to compute in certain regimes (which is widely believed although so-far unproved

in standard computational models), then accurately testing for the existence of a sparse

leading eigenvector when n ≲log s
2 is NP-hard. Wang et al. [74] and Gao et al. [75] further

refine this by showing that, under a similar assumption, there is no efficiently computable

consistent estimator of v1 when n ≲log s
2.

3.2 Key tool: A sparsity-and-low-rank–inducing atomic norm

To motivate our approach, consider the optimization problem (Equation 3.2) from [66] for

sparse phase retrieval or its least-squares version

B̂ = arg min
B⪰0

1

2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)
2 + λ1 tr(B) + λ2∥B∥1,1. (3.3)

It turns out that quadratic (in sparsity) O(s2) complexity is a fundamental performance

bound for this class of methods. Our target matrix B∗ has two kinds of structure: it is

rank-1 and s2-sparse. The trace regularization in our estimator encourages low rank, while

the ℓ1 regularization encourages sparsity. However, recent work [76, 77] has shown it is

impossible to take advantage of both kinds of structure simultaneously with a regularizer

that is merely a convex combination of the two structure-inducing regularizers; the best we

can do is exploit either the low rank as in non-sparse phase retrieval, in which case we get

O(p) complexity, or the s2-sparsity, in which case we get O(s2) complexity.

To see intuitively why we have this problem, note that the nuclear norm and elementwise
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ℓ1 norm are both examples of projective tensor norms [78]. For matrix A of any size,

∥A∥∗ = inf
{∑

∥ui∥2∥vi∥2 : A =
∑

ui ⊗ vi

}
= inf

{∑ ∥ui∥22 + ∥vi∥22
2

: A =
∑

ui ⊗ vi

}
,

and

∥A∥1,1 = inf
{∑

∥ui∥1∥vi∥1 : A =
∑

ui ⊗ vi

}
= inf

{∑ ∥ui∥21 + ∥vi∥21
2

: A =
∑

ui ⊗ vi

}
.

Equivalently, these norms are atomic norms [79] where the atoms are rank-1 matrices with

unit ℓ2 or ℓ1 norms. For a PSD matrix, the trace is the nuclear norm, so the regularizer in

(Equation 3.3) can be expressed as

λ1 tr(B) + λ2∥B∥1,1 = λ1 inf

{∑ ∥ui∥22 + ∥vi∥22
2

: B =
∑

ui ⊗ vi

}
+ λ2 inf

{∑ ∥wi∥21 + ∥zi∥21
2

: B =
∑

wi ⊗ zi

}
.

(3.4)

A key feature of B∗ = β∗ ⊗ β∗ is that the factors of its rank-1 decomposition have a

certain ℓ2 norm and are sparse. Because the two infima in (Equation 3.4) are separate, the

regularizer promotes matrices with two separate atomic decompositions of low ℓ2 and ℓ1

norm respectively. It does not encourage a decomposition into low-rank matrices with

factors that have simultaneously low ℓ2 norm and low ℓ1 norm.

Inspired by the framework of Haeffele and Vidal [80], we propose the following regular-

izer:

∥B∥∗,s := inf
{∑

θs(ui, vi) : B =
∑

ui ⊗ vi

}
, (3.5)

where

θs(u, v) =
1

2

(
∥u∥22 + ∥v∥22 +

∥u∥21 + ∥v∥21
s

)
,
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and s > 0 is a parameter that represents the sparsity (or an approximation thereof) of

the vector we are interested in recovering. Similar notions of atomic norms that promote

simultaneous low rank and sparsity have appeared in [81, 77].

We will show in the next section that using ∥·∥∗,s as a regularizer in lifted formulations

of sparse phase retrieval and PCA gives sample complexity and error bounds nearly identical

to the linear regression case.

3.3 Theoretical guarantees for atomic-norm regularized estimators

In this section, we state precisely our main problems, assumptions, abstract convex opti-

mization algorithm, and theoretical guarantees.

3.3.1 Sparse phase retrieval

Suppose β∗ ∈ Rp is an s-sparse vector. Let x be a random vector in Rp. We observe n i.i.d.

copies (x1, y1), . . . , (xn, yn) of the random couple (x, y), where y is a real random variable

whose distribution conditioned on x depends only on ⟨x, β∗⟩2 (i.e., y ∼ py(y | ⟨x, β∗⟩2)).

Let ξ := y − ⟨x, β∗⟩2 denote the “noise.” We make the following assumptions:

Assumption 1 (Sub-Gaussian measurements). The entries (x(1), . . . , x(p)) of x are i.i.d. real

random variables with Ex(i) = 0, E(x(i))2 = 1, E(x(i))4 > 1, and sub-Gaussian norm

∥x(i)∥ψ2 ≤ K for some K > 0.

Note that the fourth-moment assumption excludes Rademacher random variables. In

what follows, for simplicity of presentation, all dependence on K and the difference

E(x(i))4 − 1 will be subsumed into unspecified constants.

Assumption 2 (Zero-mean, bounded-moment noise). E[ξ | x] = 0 almost surely, and, for

all u ∈ Rp such that ∥u∥2 ≤ 1,

E ξ2⟨x, u⟩4 ≤ σ2(β∗),
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where σ2(β∗) is a quantity that possibly depends on the vector β∗, the distribution of x, and

the conditional distribution of y. Furthermore, there are M, η ≥ 0 such that

∥ξ⟨x, u⟩2∥α ≤Mαη+1

for α ≥ 3 and all u ∈ Rp such that ∥u∥2 ≤ 1 (where ∥Z∥α := (E|Z|α)1/α for any random

variable Z).

Our two working examples are the following:

• Independent additive noise: ξ is independent of all other quantities, in which case we

can take σ2(β) ≈ var(ξ), and M and η depend on the moments of ξ.

• Poisson noise: y ∼ Poisson(⟨x, β∗⟩2) conditioned on x. In this case, under Assump-

tion 1, we can take σ2(β∗) ≈ ∥β∗∥22, M ≈ ∥β∗∥2 + 1, and η = 1 (we prove this in

Section A.5).

As before, we lift the problem into the space of PSD matrices by setting B∗ = β∗ ⊗ β∗

and X = x⊗x. We then choose a regularization parameter λ ≥ 0 and compute our estimate

by the following optimization problem:

B̂ = arg min
B∈Rp×p

1

2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)
2 + λ∥B∥∗,s. (3.6)

We then have the following guarantee for sample complexity and error, proved in

Section A.3:

Theorem 5. Suppose Assumptions 1 and 2 hold. Suppose β∗ is s-sparse and that the number

of measurements n satisfies n ≳ s log(ep/s). If the regularization parameter satisfies

λ ≳

√
s log(ep/s)

n
σ2(β∗) +

M

n1−c

(
s log

ep

s

)η+1

,
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where c ≈ (s log(ep/s))−1, then, with probability at least 1−e−n−e−s(s/p)s, the estimator

B̂ from (Equation 3.6) satisfies

∥B̂ −B∗∥∗ ≲ λ.

Remark 1. For simplicity of presentation, we assume that the sparsity level s used in the

regularizer is in fact (an upper bound on) the sparsity of β∗. We could easily extend our

results to the “misspecified” case ∥β∗∥0 = s0 > s.

Remark 2. By a standard argument (found, e.g., in [54]), if β̂ ⊗ β̂ is the closest rank-1

approximation to B̂, then β̂ satisfies

min{∥β̂ − β∗∥2, ∥β̂ + β∗∥2} ≲
λ

∥β∗∥2
.

Remark 3. The required sample complexity s log(ep/s) is precisely the optimal sample

complexity from traditional linear sparse recovery. For large n, the noise error rate (with

appropriately chosen λ) is also the optimal
√
(s/n) log(ep/s), but, if η > 0, this only holds

when n is significantly larger than the required s log(ep/s). In our proof, this is due to the

fact that we need concentration inequalities for sums depending on ⟨x, u⟩2 for arbitrary

vectors u; these terms have higher moments than the ⟨x, u⟩ terms we would typically see in

linear settings.

If log n ≳ s log(ep/s), we could have the result hold with probability ≥ 1− 2e−n if we

replaced
√

(s/n) log(ep/s) by (log n)/n in the lower bound on λ. The factor of nc in the

second term in the lower bound on λ is negligible except in the case of very badly-behaved

noise and very large n.

Remark 4. In the independent additive noise case, a simple modification of our proof would

show that the result holds uniformly over β∗. If var(ξ) = σ2, we get, for appropriately

chosen λ,

∥B̂ −B∗∥∗ ≲
√

s log(ep/s)

n
σ +

M

n1−c

(
s log

ep

s

)η+1

.
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Remark 5. In the Poisson observation case, we obtain, for appropriately chosen λ,

∥B̂ −B∗∥∗ ≲
√

s log(ep/s)

n
∥β∗∥2 +

∥β∗∥2 + 1

n1−c

(
s log

ep

s

)2
.

When β∗ ̸= 0, and n is large enough that the first error term dominates, we have, up to a

sign, that

∥β̂ − β∗∥2 ≲
√

s log(ep/s)

n
,

where β̂ is the appropriately-scaled leading eigenvector of B̂. Thus we get an error bound

does that not depend on ∥β∗∥2.

3.3.2 Sparse PCA

We can apply the atomic regularizer to the sparse PCA problem via another standard lifted

formulation:

Theorem 6. Suppose we observe n i.i.d. copies of the p-dimensional vector x ∼ N (µ,Σ),

where Σ = σ1v1 ⊗ v1 + Σ2, v1 is s-sparse and unit-norm, σ1 > ∥Σ2∥ =: σ2, and Σ2v1 = 0.

Choose

λ ≳
√
σ1σ2

√
s log(ep/s)

n

and let

P̂ = arg min
P∈Rp×p

− ⟨Σ̂, P ⟩HS + λ∥P∥∗,s s.t. ∥P∥∗ ≤ 1, (3.7)

where

Σ̂ =
1

n

n∑
i=1

(xi − x̄)⊗ (xi − x̄) =

(
1

n

n∑
i=1

xi ⊗ xi

)
− x̄⊗ x̄

is the empirical covariance of x1, . . . , xn (x̄ = 1
n

∑n
i=1 xi).

For t > 0, if n ≳ max

{
s log ep

s
,
(

σ1
σ1−σ2

)2
t

}
, then, with probability at least 1− e−t −

e−s(s/p)s,

∥P̂ − P1∥F ≲
λ

σ1 − σ2

,
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where P1 = v1 ⊗ v1.

We prove this result in Section A.4.

Remark 6. The assumption that x is Gaussian could easily be relaxed to x = Σ1/2z, where

z is a sub-Gaussian random vector, as in, for example, [69].

Remark 7. For properly chosen λ and large enough n, the resulting error rate

∥P̂ − P1∥F ≲
√
σ1σ2

σ1 − σ2

√
s log(ep/s)

n

matches the minimax lower bounds in [69, 71].

3.3.3 PSD constraints and another regularizer

For phase retrieval and PCA, it is natural to restrict our estimators to be PSD. All of our

theoretical results hold if we add a B ⪰ 0 constraint to (Equation 3.6) or a P ⪰ 0 constraint

to (Equation 3.7).

Unlike the nuclear norm case (where the optimal decomposition is the singular value

decoposition, which is identical to the eigenvalue decomposition for a PSD matrix), it is not

clear whether every PSD matrix B admits a symmetric (i.e., ui = vi) optimal decomposition

with regard the definition of ∥B∥∗,s in (Equation 3.5). Therefore, it is natural to define

as a new regularizer the following gauge function/asymmetric norm on the space of PSD

matrices: for B ⪰ 0,

Θs(B) = inf
{∑

θs(ui, ui) : B =
∑

ui ⊗ ui

}
.

All of our theoretical and computational results in Sections 3.3 and 3.4 can be easily extended

to this choice of regularizer. This choice of regularizer is computationally convenient because

if we optimize over a matrix B by optimizing over factors ui, vi such that B =
∑

i ui ⊗ vi

as in Section 3.4.2, we can enforce a PSD constraint simply by forcing ui = vi.
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3.4 Computational limitations and a practical algorithm for phase retrieval

Although the mixed atomic norm ∥·∥∗,s is a powerful theoretical tool, it is not clear how

to calculate (let alone optimize) it for a general matrix in practice, since it is defined as an

infimum over infinite sets of possible factorizations.

A warning that computations with these atomic regularizers may be difficult in general is

that they can be used to get Olog(s) sample complexity for sparse PCA, which, as discussed

in Section 3.1.3, is widely believed to be impossible with efficient algorithms.

In this section, we will analyze the convex programs more carefully, with a particular

focus on phase retrieval.5 We will analyze the optimality conditions via a dual problem and

thereby develop a heuristic algorithm.

This problem was studied in greater generality in [80]. Their Corollary 1 is similar to

our Corollary 2. However, our analysis of the dual problem is quite different from their

perturbation argument, and we can much more easily apply our method to the sparse PCA

optimization problem (Equation 3.7) with its inequality constraint. Furthermore, we think

the reader will benefit from our deriving the optimality conditions from more elementary

principles for the particular problem we are trying to solve.

3.4.1 Factorization, duality, and optimality conditions

To move toward a practical algorithm, we consider optimizing (Equation 3.6) in factored

form; rather than optimizing over B directly, we optimize over the factors {uk, vk} of a

factorization B =
∑

k uk ⊗ vk. Then (Equation 3.6) is equivalent to

min
{uk,vk}⊂Rp

1

2n

n∑
i=1

(
yi −

〈
Xi,
∑
k

uk ⊗ vk

〉
HS

)2

+ λ
∑
k

θs(uk, vk). (3.8)

5While our algorithmic approach led to strong empirical performance for sparse phase retrieval, the
approach was less effective for sparse PCA. We leave a more thorough investigation of this phenomenon for
future work.
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The obvious drawback to this form is that the optimization problem is no longer convex;

therefore, it is not clear whether finding a global minimum is computationally feasible.

To determine how well a factored algorithm works (e.g., to certify optimality), we

examine a dual problem to (Equation 3.6). We formulate the dual via a trick found in [82]:

note that b2/2 = maxa ab− a2/2 (achieved if and only if a = b), and therefore

min
B∈Rp×p

1

2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)
2 + λ∥B∥∗,s

= min
B∈Rp×p

1

2n

n∑
i=1

max
αi

(
2αi(yi − ⟨Xi, B⟩HS)− α2

i

)
+ λ∥B∥∗,s

≥ max
α∈Rn

[
1

n

n∑
i=1

(
αiyi −

α2
i

2

)
+ min

B∈Rp×p

(
λ∥B∥∗,s −

1

n

n∑
i=1

αi⟨Xi, B⟩HS

)]
,

where the inequality comes from swapping the maximum over α = (α1, . . . , αn) and the

minimum over B.

Define the dual norm ∥·∥∗∗,s by

∥Z∥∗∗,s = max
B∈Rp×p

∥B∥∗,s≤1

⟨Z,B⟩HS.

Because ∥·∥∗∗,s is nonnegatively homogeneous,

min
B∈Rp×p

(
λ∥B∥∗,s −

〈
1

n

n∑
i=1

αiXi, B

〉
HS

)
=


0 if

∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ

−∞ otherwise.

Therefore, a dual formulation of (Equation 3.6) is

max
α∈Rn

(
1

n

n∑
i=1

αiyi −
α2
i

2

)
s.t.

∥∥∥∥∥ 1n
n∑
i=1

αiXi

∥∥∥∥∥
∗

∗,s

≤ λ. (3.9)

This is a convex problem, since the dual norm is convex (as a maximum of linear functions).
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Before we go further, note that,

∥Z∥∗∗,s = max
u,v∈Rp

θs(u,v)≤1

⟨Zu, v⟩.

To see this, note that

∥Z∥∗∗,s = sup

{
⟨Z,B⟩HS : B =

∑
k

uk ⊗ vk, {uk, vk} ⊂ Rp,
∑
k

θs(uk, vk) ≤ 1

}

= sup

{∑
k

⟨Zuk, vk⟩ : {uk, vk} ⊂ Rp,
∑
k

θs(uk, vk) ≤ 1

}

= sup

{
K∑
k=1

⟨Zuk, vk⟩ : K ≥ 1, {uk, vk}Kk=1 ⊂ Rp,
K∑
k=1

θs(uk, vk) ≤ 1

}
.

For any finite sequence {uk, vk}Kk=1 with
∑K

k=1 θs(uk, vk) ≤ 1, set k∗ = arg maxk
⟨Zuk,vk⟩
θs(uk,vk)

,

ũ = uk∗√
θs(uk∗ ,vk∗ )

, and ṽ = vk∗√
θs(uk∗ ,vk∗ )

; then θs(ũ, ṽ) = 1, and ⟨Zũ, ṽ⟩ ≥
∑K

k=1⟨Zuk, uk⟩.

Therefore,

∥Z∥∗∗,s = sup{⟨Zu, v⟩ : θs(u, v) ≤ 1}.

We can replace the supremum by a maximum because the objective function is continuous

and the constraint set is compact.

Returning to the optimization problem, note that a feasible point α for the dual problem

gives us a lower bound on the primal optimal value. If there exist B ∈ Rp×p, α ∈ Rn such

that α is feasible and the two objective functions are equal, then we know B is optimal for

the primal problem. More precisely, (B,α) is an optimal primal-dual pair if and only if

(a) the primal objective function at B equals the dual objective functions at α, and

(b) α is feasible, i.e.,
∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ.

From the derivation of the dual problem above, (a) requires αi = yi − ⟨Xi, B⟩HS. Making

this substitution, setting the objective functions equal, and simplifying gives one direction

of the following result:
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Lemma 7. B solves (Equation 3.6) if and only if both of the following hold:

(a) 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)⟨Xi, B⟩HS = λ∥B∥∗,s.

(b)
∥∥ 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi

∥∥∗
∗,s ≤ λ.

Proof. We have already shown that these conditions are sufficient for optimality. To see

the other direction (that these conditions are necessary for optimality), note that Z :=

1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi is the negative gradient of the empirical loss at B. Because

condition (b) is equivalent to

⟨Zu, v⟩ ≤ λθs(u, v) ∀u ∈ Rp,

if (b) does not hold, there exists some ū, v̄ ∈ Rp such that ⟨Zū, v̄⟩ > λθs(ū, v̄), and then we

can decrease the objective function by moving to B + ϵū⊗ v̄ for some sufficiently small

ϵ > 0. Thus (b) is a necessary condition for the optimality of B.

Now suppose (b) holds, but (a) does not. Condition (b) implies that ⟨Z,B⟩HS ≤ λ∥B∥∗,s,

so we must have ⟨Z,B⟩HS < λ∥B∥∗,s.

Let B =
∑

k uk ⊗ vk be an optimal factorization with respect to the definition of

∥B∥∗,s, that is, such that ∥B∥∗,s =
∑

k θs(uk, vk) (we assume, for clarity, that an optimal

factorization exists—if not, we could use an approximation argument). There must be some

uk, vk such that ⟨Zuk, vk⟩ < λθs(uk, vk). Then, modifying B by replacing (uk, vk) with

((1− ϵ)uk, (1− ϵ)vk) for some sufficiently small ϵ > 0 will decrease the objective function.

Note that the proof of Lemma 7 gives us an explicit way to improve the objective

function whenever one of the optimality conditions is not satisfied.

Applying our derivation to the factored optimization problem, we get the following

result:
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Corollary 2. B solves (Equation 3.6) and B =
∑

k uk ⊗ vk is an optimal factorization with

respect to ∥·∥∗,s (equivalently, {uk, vk} solve (Equation 3.8)) if and only if the following

hold:

(a) For all k, 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)⟨Xiuk, vk⟩ = λθs(uk, vk).

(b)
∥∥ 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi

∥∥∗
∗,s ≤ λ; equivalently, for all u, v ∈ Rp,

1

n

n∑
i=1

(yi − ⟨Xi, B⟩HS)⟨Xiu, v⟩ ≤ λθs(u, v).

Note that we have broken out condition (a) into individual equalities (rather than equating

the sums of each side); condition (b) allows us to do this. It is even easier to find a

descent direction when one of these conditions fails to hold, since the objective function of

(Equation 3.8) already depends explicitly on the vectors uk, vk.

Note that condition (a) is much easier to verify than condition (b). We refer to {uk, vk}

as a first-order stationary point if it satisfies condition (a), since this is equivalent to a zero

subgradient on the (nonzero) uk’s and vk’s (cf. Proposition 2 in [80]).

Although we are not focusing on sparse PCA here, it may be interesting to compare

Corollary 2 to what we get for sparse PCA, particularly as PCA may be a fundamentally

more difficult problem. A dual problem to (Equation 3.7) is

arg max
Z∈Rp×p

− ∥Z∥ s.t ∥Σ̂− Z∥∗∗,s ≤ λ.

The following lemma gives (redundant) optimality conditions:

Lemma 8. P solves (Equation 3.7) if and only if ∥P∥∗ = 1 and there exists Z ∈ Rp×p such

that

1. ∥Σ̂− Z∥∗∗,s ≤ λ,

2. ⟨Σ̂− Z, P ⟩HS = λ∥P∥∗,s,
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3. ⟨Z, P ⟩HS = ∥Z∥ = ∥Z∥∥P∥∗, and

4. ∥Z∥ = ⟨Σ̂, P ⟩HS − λ∥P∥∗,s.

In the PCA case, the semidefinite version of the problem is somewhat simpler due to the

fact that the nuclear norm becomes a trace. If we solve

P̂ = arg min
P⪰0

− ⟨Σ̂, P ⟩HS + λΘs(P ) s.t. tr(P ) ≤ 1,

we get similar theoretical error guarantees as Theorem 6. Furthermore, P =
∑

k uk ⊗ uk

solves this optimization program and {uk} is an optimal factorization with respect to Θs if

and only if P is feasible and, for all u ∈ Rp.

⟨Σ̂u, u⟩+

(
λ
∑
k

θs(uk, uk)− ⟨Σ̂, P ⟩HS

)
∥u∥22 ≤ θs(u, u).

3.4.2 A first factored algorithm, a computational snag, and a heuristic

The results of the previous section give a simple abstract recipe for finding a global optimum

of (Equation 3.6):

1. We optimize (Equation 3.8) over a fixed number r of rank-1 factors (i.e., vectors

u1, . . . , ur, v1, . . . , vr) until we reach a first-order stationary point (by satisfying con-

dition (a) in Corollary 2). Note that whenever condition (a) is not satisfied, it is easy

to find a descent direction, since we can simply rescale the vectors uk, vk in a similar

manner to the second part of the proof of Lemma 7.

2. At a first-order stationary point, if condition (b) in Corollary 2 holds, we have reached

the global minimum. Otherwise, as in the first part of the proof of Lemma 7, there

exists ũ, ṽ ∈ Rp such that 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)⟨Xiũ, ṽ⟩ > λθs(ũ, ṽ). We set

(ur+1, vr+1) = (ϵũ, ϵṽ) for ϵ > 0 small enough to decrease the objective function and

go back to step 1.

63



The algorithm is guaranteed to terminate with a finite r by [80, Theorem 2].

The most difficult part to implement is step 2. Checking condition (b) requires maximiz-

ing a bilinear form on vectors u, v under a bound on θs(u, v). If we could maximize this for

general bilinear forms, we could also solve sparse PCA (see Section 3.4.1), so we suspect it

is not possible. However, this does not preclude positive results that exploit the particular

structure of the phase retrieval problem.

To implement a practical algorithm, we take a very simple shortcut: instead of checking

condition (b) over all vectors u, v ∈ Rp, we check it over 1-sparse vectors. We simply

calculate whether any element of 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi is greater than (1 + 1/s)λ.

Although we have not yet found a robust theoretical justification, we will see in the next

section that this heuristic works reasonably well in practice. We summarize our high-level

practical algorithm in Algorithm 1.

Algorithm 1 High-level sparse phase retrieval algorithm
1: r ← 1
2: Initialize u1, v1 (e.g., some spectral algorithm)
3: while not Converged do
4: Optimize (Equation 3.8) over {u1, . . . ur}, {v1, . . . , vr}with first-order method until

condition (a) in Corollary 2 is satisfied
5: Z ← 1

n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi, where B =

∑r
k=1 uk ⊗ vk

6: if Zij > (1 + 1/s)λ for any i, j ∈ {1, . . . , p} then
7: r ← r + 1
8: ur+1 ← ϵej, vr+1 ← ϵei, where ϵ > 0 is sufficiently small to decrease objective

function.
9: else

10: Converged← true
11: end if
12: end while
13: return {u1, . . . , ur}, {v1, . . . , vr}

3.4.3 Simulation results

We implemented Algorithm 1 in MATLAB and ran a variety of simulations to illustrate its

performance with respect to both sample complexity and noise performance. The interested
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(a) Our algorithm
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(b) SWF [61]
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(c) GAMP [65]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0

n

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

s

(d) SPARTA [60]
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(e) CoPRAM [63]

Figure 3.1: Phase transition plots. Colors represent 80% quantile error over 10 trials (darker
colors correspond to higher error). We used p = 20,000, ∥β∗∥2 = 1, and σ = 0.02. All
algorithms were run on the same data.
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(a) Gaussian noise (∥β∗∥2 = 1, σ = 0.05)
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(b) Poisson noise (∥β∗∥2 = 20)

Figure 3.2: Plot of ∥β̂ − β∗∥2 vs. s (80% quantile over 10 trials). All simulations use
p = 10,000 and n = 6,000. Blue circles are actual data; the red curves are of the form
c
√
s log ep

s
, where the scaling factor c is chosen to give minimum mean absolute deviation.

reader can view our code6 to see more details, but some of the more salient features are the

following:

• Line 5 of Algorithm 1 is implemented with alternating minimization over U =

[u1 · · ·ur] ∈ Rp×r and V = [v1 · · · vr] ∈ Rp×r.

• After each alternating minimization step, we “rebalance” U and V (i.e., rescale each

uk, vk to force θs(uk, uk) = θs(uk, vk) = θs(vk, vk)).

• Each minimization problem over U or V is convex, and we solve it with an accelerated

proximal gradient descent algorithm.

• The proximal step requires solving a convex problem of the form

arg min
y∈Rp

⟨x, y⟩+ a

2
∥y∥22 +

b

2
∥y∥21

for arbitrary x ∈ Rp. The solution is a soft-thresholding of x with a data-dependent

threshold; the threshold can be found by an efficient iterative algorithm (e.g., a

6https://github.com/admcrae/spr2021
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Newton algorithm). This problem is closely related to calculating the dual norm to

∥y∥ :=
√
∥y∥22 + 1

s
∥y∥21 for arbitrary s > 0, i.e., ∥x∥∗ = max∥y∥≤1⟨x, y⟩. This may

be an interesting object for further theoretical study.

All of our simulations used i.i.d. Gaussian measurement vectors x ∼ N (0, Ip).

1. Figure 3.1 shows phase transition diagrams of performance versus sample size n and

sparsity s for our algorithm and a variety of alternatives. Note that qualitatively, all

these algorithms have similar performance in terms of sample complexity. Interest-

ingly, all of them appear only to require (within a log factor) a number of samples

linear in the sparsity s. This demonstrates a gap between the empirical performance

of all these algorithms and the best theoretical guarantees that have been proved so

far.

2. Figure 3.2 shows plots of the error versus sparsity s for both Gaussian noise and

Poisson noise. Note that in both cases, the error roughly follows the predicted√
s log(p/s) scaling.

3.5 Conclusion

We have shown that estimators for sparse phase retrieval and sparse PCA obtained by solving

a convex program ((Equation 3.6) for sparse phase retrieval and (Equation 3.7) for sparse

PCA) with the abstract mixed atomic norm (Equation 3.5) as a regularizer satisfy optimal

statistical guarantees in terms of sample complexity and error. For sparse phase retrieval,

we have derived a practical heuristic algorithm whose performance matches that of existing

state-of-the-art algorithms.

Our work suggests new methods for analyzing these problems (and others with similar

sparse factored structure, such as sparse blind deconvolution). It also suggests interesting

new research directions in sparse recovery and in optimization. For example, it would

be very useful to study why our heuristic approach appears to work well for sparse phase
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retrieval as well as whether it is possible to do even better. A related problem is to prove

that sparse phase retrieval has linear sample complexity with practical algorithms (or that it

doesn’t, along with why current empirical results seem to suggest otherwise). Similarly, the

atomic matrix norm (along with other similar norms) invites further analysis, particularly

in how well we can optimize it (where this may depend on the structure of the problem in

which it is used). The interplay between statistical guarantees and computational complexity

theory (e.g., in sparse PCA) may be very interesting here.
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CHAPTER 4

SAMPLE COMPLEXITY AND EFFECTIVE DIMENSION FOR REGRESSION ON

MANIFOLDS

In this chapter,1 we consider the theory of regression on a manifold using reproducing kernel

Hilbert space methods. Manifold models arise in a wide variety of modern machine learning

problems, and our goal is to help understand the effectiveness of various implicit and explicit

dimensionality-reduction methods that exploit manifold structure. Our first key contribution

is to establish a novel nonasymptotic version of the Weyl law from differential geometry.

From this we are able to show that certain spaces of smooth functions on a manifold are

effectively finite-dimensional, with a complexity that scales according to the manifold

dimension rather than any ambient data dimension. Finally, we show that given (potentially

noisy) function values taken uniformly at random over a manifold, a kernel regression

estimator (derived from the spectral decomposition of the manifold) yields minimax-optimal

error bounds that are controlled by the effective dimension.

4.1 Introduction

High-dimensional data is ubiquitous in modern machine learning. Examples include images

(2-D and 3-D), document texts, DNA, and neural recordings. In many cases, the number of

dimensions in the data is much larger than the number of actual data samples. Traditional

statistical methods cannot handle such cases, so researchers have turned to a variety of

explicit dimensionality-reduction techniques—which make inference more tractable—and

to tools such as neural networks that often implicitly transform the data into a much lower-

dimensional feature space. These techniques inherently assume that the data have an intrinsic

dimension that is much lower than that of the data’s original representation. Our goal in

1This work is published in [83].
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this work is to show that the difficulty of a supervised learning problem depends only on

this intrinsic dimension and not on the (potentially much larger) ambient dimension. In

particular, we consider the common assumption that the data lie on a low-dimensional

manifold embedded in Euclidean space (see [84, 85, 86, 87] for some of the many example

applications).

As an illustration of the kind of results we hope to obtain, we first consider a simple

example: a function on the circle S1 (or, equivalently, a periodic function on the real

line). Specifically, suppose that we want to estimate a function f ∗ on the circle from

random samples. In general, it is intractable to estimate an arbitrary function from finitely

many samples, but it becomes possible if we assume f ∗ is structured. For example, f ∗

may exhibit a degree of smoothness, which can be readily characterized via the Fourier

series for f ∗. Specifically, recall that we can write f ∗ as the Fourier series sum f ∗(x) =

a0 +
∑

ℓ≥1(aℓ cos(2πℓx) + bℓ sin(2πℓx)). One common notion of smoothness in signal

processing is that f ∗ is bandlimited, meaning that this sum can be truncated at some largest

frequency Ω. In this case, f ∗ lies in a subspace of dimension at most p(Ω) = 2⌊Ω/2π⌋+ 1.

We know (see, e.g., [1, Chapter 12] or [88]) that we can recover such a function exactly,

with high probability, from n ≳ p(Ω) log p(Ω) samples placed uniformly at random. If

there is measurement noise, the squared L2 error due to noise scales like p(Ω)
n

σ2. In higher

dimensions (say, on the torus Tm), an Ω-bandlimited function lies in a space of dimension

p(Ω) = O(Ωm), and the number of random samples required scales accordingly.

Another model for smoothness is that f ∗, rather than being bandlimited, has exponen-

tially decaying frequency components. For example, suppose the Fourier coefficients satisfy∑
ℓ e

tℓ2(a2ℓ + b2ℓ) <∞ for some t > 0 (this is roughly equivalent to f ∗ being the convolution

of a Gaussian function with an arbitrary function in L2). The space of such functions is

infinite-dimensional, but any function in it can be approximated as Ω-bandlimited to within

an error of size O(e−cΩ
2t), which should enable us to recover a close approximation to f ∗

from O(p(Ω) log p(Ω)) samples.
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In this work, we provide precise analogs of these sample complexity results in the

general case of a function on an arbitrary manifoldM with dimension m. As on the circle

or torus, an L2 function f(x) on a Riemannian manifold has a spectral decomposition into

modes uℓ(x) corresponding to vibrational frequencies ωℓ for all non-negative integers ℓ;

these modes are the eigenfunctions of the Laplace-Beltrami operator onM. Our first key

contribution (described in Theorem 8) is a nonasymptotic version of the Weyl law from

differential geometry: this states that, for large enough Ω, the set Hbl
Ω of Ω-bandlimited

functions onM (functions composed of modes with frequencies below Ω) has dimension

dim(Hbl
Ω ) ≤ Cm vol(M) Ωm =: p(Ω). Thus the number of degrees of freedom scales

according to the manifold dimension m rather than a larger ambient dimension.

Our second key contribution is an error bound for recovering functions on M from

randomly-placed samples using kernel regression. We show in Theorem 9 that if we take

n ≳ p(Ω) log p(Ω) samples of f ∗, we can recover any Ω-bandlimited function with error

∥f̂ − f ∗∥2L2

vol(M)
≲

p(Ω)

n
σ2,

which is precisely the error rate for parametric regression in a D(Ω)-dimensional space. Our

results extend further to approximately-bandlimited functions: for example, if f ∗ satisfies∑
ℓ a

2
ℓe
tω2

ℓ <∞, where f ∗ =
∑

ℓ aℓuℓ, then, again with n ≳ p(Ω) log p(Ω) samples, we get

(Theorem 10)
∥f̂ − f ∗∥2L2

vol(M)
≲

p(Ω)

n
σ2 +O(e−cΩ

2t).

Both bounds are minimax optimal in the presence of noise.

These results follow from our Theorem 7, which is a more general result on regression

in a reproducing kernel Hilbert space. Theorems 9 and 10 adapt this result to a specific

choice of kernel.

This chapter is organized as follows. Sections section 4.2 and section 4.3 describe our

framework, survey the relevant literature, and compare it to our results. Section 4.4 contains
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our main theoretical results. The proofs are in the appendices in the supplementary material.

The key technical results are Theorem 7, which is proved via empirical risk minimization

and operator concentration inequalities, and Lemma 9 (used to prove Theorem 8), which is

proved via heat kernel comparison results on manifolds of bounded curvature.

4.2 Framework and notation

4.2.1 Kernel regression and interpolation

Kernels provide a convenient and popular framework for nonparametric function estimation.

They allow us to treat the evaluation of a nonlinear function as a linear operator on a Hilbert

space, and they give us a computationally feasible way to estimate such a function (which is

often in an infinite-dimensional space) from a finite set of samples. Here, we review some

of the key ideas that we will need in analyzing kernel methods.

Let S be an arbitrary set, and suppose k : S × S → R is a positive definite kernel. Let

H be its associated reproducing kernel Hilbert space (RKHS), characterized by the identity

f(x) = ⟨f, k(·, x)⟩H for all f ∈ H and x ∈ S.

Now, suppose we have X1, . . . , Xn ∈ S, f ∗ ∈ H is an unknown function, and we

observe Yi = f ∗(Xi) + ξi for i = 1, . . . , n, where the ξi’s represent noise. A common

estimator for f ∗ is the regularized empirical risk minimizer

f̂ = arg min
f∈H

1

n

n∑
i=1

(Yi − f(Xi))
2 + α∥f∥2H, (4.1)

where α ≥ 0 is a regularization parameter. The solution to the optimization problem

(Equation 4.1) is

f̂(x) =
n∑
i=1

aik(x,Xi), (4.2)

where a = (a1, . . . , an) ∈ Rn is given by

a = (nαIn +K)−1Y ,
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where Y = (Y1, . . . , Yn) ∈ Rn, K is the kernel matrix on X1, . . . , Xn defined by Kij =

k(Xi, Xj), and In is the n× n identity matrix.

In general, f̂ corresponds to a ridge regression estimate of f ∗. The limiting case α = 0

can be recast as the problem

f̂ = arg min
f∈H

∥f∥H s.t. Yi = f(Xi), i = 1, . . . , n.

In this case, if the Xi’s are distinct, then f̂ interpolates the measured values of f ∗.

4.2.2 Kernel integral operator and eigenvalue decomposition

A common tool for analyzing kernel interpolation and regression, which will play a central

role in our analysis in Section 4.4, is the eigenvalue decomposition of a kernel’s associated

integral operator. The integral operator T is defined for functions f on S by

(T (f))(x) =
∫
S

k(x, y)f(y) dµ(y),

where µ is a measure on S. Under certain assumptions2 on S, µ, and k, T is a well-defined

operator on L2(S), is compact and positive definite with respect to the L2 inner product, and

has eigenvalue decomposition

T (f) =
∞∑
ℓ=1

tℓ⟨f, vℓ⟩L2vℓ, f ∈ L2(S),

where the eigenvalues {tℓ} are arranged in decreasing order and converge to 0, and

the eigenfunctions {vℓ} are an orthonormal basis for L2(S). We also have k(x, y) =∑∞
ℓ=1 tℓvℓ(x)vℓ(y), where the convergence is uniform and in L2.

This eigendecomposition plays an important role in characterizing the RKHSH associ-

ated with the kernel k. Combining this expression for k with the identity ⟨f, k(·, x)⟩H =

2E.g., S is a compact metric space; µ is strictly positive, finite, and Borel; and k is continuous [89].
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f(x), we can derive the fact that, for all f, g ∈ H,

⟨f, g⟩H =
∞∑
ℓ=1

⟨f, vℓ⟩L2⟨g, vℓ⟩L2

tℓ
.

This implies that ⟨f, g⟩L2 = ⟨T 1/2(f), T 1/2(g)⟩H for all f, g ∈ L2(S). Thus T 1/2 is

an isometry from L2(S) to H, and so for any f ∈ H, we can write f = T 1/2(f0),

where ∥f0∥L2 = ∥f∥H. This implies that, for any p ≥ 1, the projection of f onto

(span{v1, . . . , vp})⊥ has L2 norm at most
√
tp+1∥f∥H. Hence the decay of the eigenvalues

{tℓ} of T characterizes the “effective dimension” ofH in L2, which will be a fundamental

building block for our analysis.

4.2.3 Spectral decomposition of a manifold and related kernels

We now turn to our specific problem of regression on a manifold, considering how an RKHS

framework can help us. The book [90] is an excellent reference for the material in this

section.

A smooth, compact Riemannian manifoldM (without boundary) can be analyzed via

the spectral decomposition of its Laplace-Beltrami operator ∆M (we will often call it the

Laplacian for short). This operator is defined as ∆Mf := − div(∇f). In Rm, it is simply

the operator −
∑m

i=1
∂2

∂x2i
. The Laplacian can be diagonalized as

∆Mf =
∞∑
ℓ=0

λℓ⟨f, uℓ⟩L2uℓ,

where 0 = λ0 < λ1 ≤ λ2 ≤ · · · , the sequence λℓ → ∞ as ℓ → ∞, and {uℓ} is an

orthonormal basis for L2(M) (all integrals are with respect to the standard volume measure

onM).

The eigenvalues {λℓ} are the squared resonant frequencies ofM, and the eigenfunctions

{uℓ} are the vibrating modes, since solutions to the wave equation ftt +∆Mf = 0 onM
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have the form

f(t, x) =
∞∑
ℓ=0

(aℓ sin
√
λℓt+ bℓ cos

√
λℓt)uℓ(x).

The classical Weyl law (e.g., [90, p. 9]) says that, ifM has dimension m, then, asymptoti-

cally,

|{ℓ : λℓ ≤ λ}| ∼ cm vol(M)λm/2

as λ→∞, where cm = (2π)−m Vm, with Vm denoting the volume of the unit ball in Rm.

Using the spectral decomposition of the Laplacian, any number of kernels can be defined

by

k(x, y) =
∞∑
ℓ=0

g(λℓ)uℓ(x)uℓ(y)

for some function g. With this construction, the integral operator of k has eigenvalue decom-

position T (f) =
∑

ℓ≥0 g(λℓ)⟨f, uℓ⟩L2uℓ, hence, per Section 4.2.2, ∥f∥2H =
∑

ℓ≥0
⟨f,uℓ⟩2
g(λℓ)

.

Our results could, in principle, apply to many kernels with the above form, but we will

primarily consider bandlimited kernels and the heat kernel. The bandlimited kernel with

bandlimit Ω > 0 is

kbl
Ω (x, y) =

∑
λℓ≤Ω2

uℓ(x)uℓ(y),

which is the reproducing kernel of the space of bandlimited functions onM:

Hbl
Ω =

{
f ∈ L2(M) : f ∈ span{uℓ : λℓ ≤ Ω2}

}
with ∥f∥Hbl

Ω
= ∥f∥L2 for f ∈ Hbl

Ω . The heat kernel is a natural counterpart to the common

Gaussian radial basis function on Rm. Detailed treatments can be found in [90, 91]. We

will define it for t > 0 as

kh
t (x, y) =

∞∑
ℓ=0

e−λℓt/2uℓ(x)uℓ(y).
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Its corresponding RKHS is

Hh
t =

{
f ∈ L2(M) : ∥f∥2Hh

t
=

∞∑
ℓ=0

eλℓt/2⟨f, uℓ⟩2L2
<∞

}
.

The heat kernel kh
t gets its name from the fact that it is the fundamental solution to the heat

equation ft +
1
2
∆Mf = 0 onM. The heat kernel on Rm is kh

t (x, y) =
1

(2πt)m/2 e
−∥x−y∥2/2t.

4.3 Related work

4.3.1 Dimensionality reduction and low-dimensional structure

There is an extensive literature on the use of low-dimensional manifold structure in machine

learning. Perhaps most prominently, nonlinear dimensionality-reduction techniques that

exploit manifold structure have been developed, such as [92, 93, 94, 95, 96]. More recently,

there has been explicit inclusion of manifold models into neural network architectures

[97, 98, 99, 100]. However, none of this research provides nonasymptotic performance

guarantees.

On the other hand, the field of high-dimensional statistics provides many theoretical

guarantees for low-dimensional data models. For example, there are extensive bodies of

theory for models such as sparsity [101, 102] and low-rank structure [103]. One can view

low-dimensional manifold models as a more powerful generalization of such structures.

One interesting work that bridges the gap between manifold models and high-dimensional

statistics is [104], which is another explicit dimensionality-reduction technique. Another

similar line of work is the study of algebraic variety models (e.g., [105]), which are also

nonlinear and low-dimensional.

While the great success of the many implicit and explicit dimensionality-reducing

methods provides empirical evidence for the possibility of exploiting manifold structure,

there are still very large gaps in our theoretical understanding of when and why these

methods can be effective.
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4.3.2 Manifold regression and kernels

Regression on manifold domains has been explored in a number of previous works. The

closely-related problem of density estimation is considered in [106, 107]. Particularly

relevant to our work, [106] uses the same bandlimited kernel and heat kernel that we

highlight (and it analyzes the spectral decomposition of these kernels via the asymptotic

Weyl law). It is primarily interested in the power of the error rate that can be obtained by

assuming the function (density) of interest has a certain number of derivatives; in particular,

it shows that ∥f̂ − f ∗∥2L2
≲ n−2s/(m+2s) if f has s bounded derivatives. Both works, like

ours, assume explicit knowledge of the manifold.

Perhaps more relevant to practical applications, [108] seeks to provide a manifold-

agnostic algorithm via local linear approximations to the data manifold; however, it is also

primarily interested in asymptotic error rates. The paper [109] examines related methods

asymptotically in more detail. Another manifold-agnostic method similar in spirit to ours

is that of [110], who consider kernel estimation with (Euclidean) Gaussian radial basis

functions. They obtain the optimal n−2s/(m+2s) rate for s-smooth regression functions;

however, their assumptions are quite different from ours in that their regression functions

must have smooth extensions to (a neighborhood in) the embedding space. Similarly, [111]

obtain the optimal rate for functions that are s-smooth (in the manifold calculus, similarly

to our assumptions) using a neural-network–type architecture. However, they implicitly

assume that the manifold is C∞-embedded in Euclidean space.

In [112, 113], the authors explore Gaussian process models (which are closely related to

kernel methods) on a manifold.

The error rate ∥f̂ − f ∗∥2L2
≲ n−2s/(m+2s) is standard (and minimax optimal) in nonpara-

metric statistics. However, our function model and results are quite different in nature. The

regression functions we consider are infinitely smooth, and we show that the estimation of

these functions is much like a finite-dimensional regression problem; not only do we get

an n−1 error rate (as we do when we take s→∞ above), but the constant in front of this
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rate and the minimum number of samples needed are proportional to the finite effective

dimension.

Finally, we also note that the idea of using a kernel that can be expressed in terms of

the spectral decomposition of a manifold’s Laplacian also has precedent. In addition to

[106], the paper [114] suggests using such kernels for interpolation in Sobolev spaces on a

manifold.

4.3.3 General kernel interpolation and regression

Regression is a strict superset of interpolation; interpolation typically assumes that we

sample function values exactly (i.e., there is no noise), while regression allows for (and

often assumes) noise.

There is a substantial literature on the use of a kernel for interpolation of functions

in an RKHS (often, in this literature, referred to as the “native space” of the kernel). A

fairly comprehensive survey can be found in [115]. Distinct from our work, most of this

literature considers deterministic samples of the function of interest. Given (deterministic)

sample locations {X1, . . . , Xn} ⊂ S, results in this literature tend to have the form ∥f̂ −

f ∗∥∞ ≤ g(hX)∥f ∗∥H, where hX = maxx∈S mini∈{1,...,n} d(x,Xi), and g(h) is a function

that decreases to 0 as h→ 0 at a rate that depends on the properties of the kernel k (typically

as a power or exponentially). Some recent work applying kernel interpolation theory to

manifolds is [116, 117, 118].

Much of the literature on (noisy) RKHS regression primarily considers the case when

the eigenvalues of the integral operator (described in Section 4.2.1) decay as tℓ ≲ ℓ−b. In

[119, 120, 121], it is shown that the minimax optimal error rate is ∥f ∗ − f̂∥2L2
≲ n−b/(b+1).

Many other recent papers have explored this rate of convergence in a variety of settings [122,

123, 124, 125]. Several of these include more general spectral regularization algorithms,

suggested by [126]. Some interesting recent extensions consider a variety of algorithms that

may be more practical for large-data situations. These include iterative methods [127, 128,
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129] and distributed algorithms [130, 131, 132].

Another set of results (which are the most similar to ours) uses a regularized effective

dimension pα =
∑

ℓ
tℓ

α+tℓ
, where α is the regularization parameter. This is considered

in [133] and greatly refined in [134]. Variations on these results can be found in [135].

See Section 4.4.1 for further discussion and comparison to our results. The earlier report

[136] resembles our work in its analysis of truncated operators. We note that in the case of

power-law eigenvalue decay, these results (and ours) recover the n−b/(b+1) error rate.

It is interesting to note that the squared error rate n−b/(b+1) can recover the standard

rate for regression of s-smooth functions on manifolds. The Sobolev space of order s is

the RKHS of the kernel
∑

ℓ(1 + λℓ)
−suℓ(x)uℓ(y). By the Weyl law, its eigenvalues decay

according to tℓ ≈ ℓ−2s/m; plugging 2s/m in for b recovers the standard rate n−2s/(m+2s).

4.4 Main theoretical results

4.4.1 Dimensionality in RKHS regression

Here we present our main results for general regression and interpolation in an RKHS. Our

results also apply to the slightly more general setting of learning in an arbitrary Hilbert

space (see, e.g., [134]), but we do not explore this here. We continue to use the notation

established in Sections 4.2.1 and 4.2.2, and we further assume that µ(S) = 1 (since µ is

finite, we can always obtain this by a rescaling). We assume that the function samples we

take are uniformly distributed on S:

Assumption 3. The sample locations X1, . . . , Xn are i.i.d. according to µ.

SinceH is, in general, infinite-dimensional, there is typically no hope of recovering an

arbitrary f ∗ ∈ H to within a small error inH-norm from a finite number of measurements.

However, the discussion in Section 4.2.2 suggests a more feasible goal. Since any set of

functions bounded inH-norm can be approximated within an arbitrarily small L2 error in a

finite-dimensional subspace of L2, as long as the number of measurements is proportional to
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this loosely-defined “effective dimension” ofH, we have hope of recovering f ∗ accurately

in an L2 sense.

Let p > 0 be a fixed integer dimension. Let G = span{v1, . . . , vp} ⊂ H ∩ L2(S),

and let G⊥ be its orthogonal complement in L2(S) and H. We denote by TG and TG⊥ the

restrictions of T onto G and G⊥, respectively. We make the following assumptions on the

eigenvalues and eigenfunctions of T :

Assumption 4. We have
∑p

ℓ=1 v
2
ℓ (x) ≤ Kp and

∑∞
ℓ=p+1 tℓv

2
ℓ (x) ≤ Rp uniformly over

almost every x ∈ S for some constants Kp and Rp independent of x.

This says that the energy of the eigenfunctions of T is reasonably spread out over the

domain S—for the basis {v1, . . . , vp}, this is a type of incoherence assumption. If the

eigenfunctions are well-behaved, we can expect Kp ≈ p and Rp ≈ tr TG⊥ . This holds in

our original example of the Fourier series on the circle, since the sinusoid basis functions

are bounded by an absolute constant. Our “pointwise” Weyl law in Theorem 8 shows that

we have similar behavior for the spectral decomposition of a manifold. Note that Kp in

Assumption 4 is identical to the quantity K(p) in [88], which uses similar methods to handle

a much simpler problem.

Assumption 5. For some γ, γ′ ≥ 0, we have tr T
G⊥

tp+1
≤ γp and Rp

tp+1
≤ γ′Kp.

This assumption greatly simplifies the notation of our results and is always true with

an appropriate choice of γ and γ′. γ is often small when tp+1 is in the decaying “tail” of

eigenvalues. If the eigenvalues decay like tℓ ≈ ℓ−b, we can take γ ≈ (b− 1)−1. Note that a

similar assumption appears in [137]. If Kp ≈ p and Rp ≈ tr TG⊥ , then γ ≈ γ′.

With these assumptions in place, we can state our main theorem for RKHS regression:

Theorem 7. Suppose Assumptions 3 to 5 hold. Let δ ∈ (0, 1). If

n ≥ (7 ∨ 3γ′)Kp log
(2 ∨ 4γ)p

δ
,
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then the following hold for the kernel estimate f̂ with regularization parameter α ≥ 0:

1. If there is no noise, that is, Yi = f ∗(Xi) for each i, then, with probability at least

1− δ, uniformly in f ∗,

∥f̂ − f ∗∥L2 ≤ (
√
2α + 6

√
tp+1)∥f ∗∥H.

2. Now suppose that Yi = f(Xi)+ξi, where the ξi’s are i.i.d., zero-mean, sub-exponential

random variables with variance σ2 and are independent of the Xi’s. If we additionally

have
n

log2 n
≥ C(1 ∨ γ′)

Kp

p

∥ξ∥2ψ1

σ2
,

where C is a universal constant, and α ≥ 54tp+1, then, with probability at least 1−2δ,

uniformly in f ∗,

∥f̂ − f ∗∥L2 ≤ (
√
2α + 6

√
tp+1)∥f ∗∥H + 4

(
1 +

√
γ

8

) √
p+ 2

√
log 4/δ

√
n

σ.

Our results guarantee an L2 recovery error bounded by two terms: (1) a “bias” depending

on the next tail eigenvalue tp+1 and the regularization coefficient α, and (2) a “variance”

term that behaves similarly to the error found in p-dimensional regression. When Kp ≈ p,

this result yields the n ≳ p log p sample complexity that we expect. If H is, in fact, p-

dimensional (which our framework can handle with tℓ = 0 for ℓ > p), this result recovers

standard p-dimensional regression bounds such as those in [88].

We assume i.i.d. noise for simplicity, but our result could easily be extended beyond this

case. Note that if the noise is Gaussian, the ratio ∥ξ∥2ψ1
/σ2 is an absolute constant.

For interpolation (α = 0) in the noiseless case, this theorem yields ∥f̂ − f ∗∥L2 ≤

6
√
tp+1∥f ∗∥H. In the noisy case, the lower bound on α can be relaxed to get a result

with worse constants. We obtain qualitatively similar results whenever α ≳ tp+1. The

assumptions and results of [134] (specialized to our setting) are comparable to Theorem 7
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when we set α ≈ tp+1. However, our results have the advantage of applying even in

infinite-dimensional settings with no regularization: the regularized effective dimension

pα =
∑

ℓ
tℓ

α+tℓ
from their work would be infinite if α = 0.

Although we do not explore it here, we note that one could generalize our approach

to the case where the sampling measure differs from that under which the L2 norm is

calculated. We could simply bound the ratio (Radon-Nikodym derivative) between the two

measures, or we could perform leverage-score sampling to mitigate the need for bounding

the eigenfunctions (see, e.g., [137] for similar ideas).

In the presence of noise, Theorem 7 is minimax optimal over the set {f ∈ H : ∥f∥H ≤

r} for any r > 0 if p is chosen so that p
n
σ2 ≈ tp+1r

2. In this case,

{
f ∈ span{v1, . . . , vp} : ∥f∥L2 ≲

√
p

n
σ

}
⊂ {f ∈ H : ∥f∥H ≤ r},

and the minimax rate (with, say, Gaussian noise) over the left-hand set is well-known to be√
p
n
σ.

4.4.2 Manifold function estimation

We now describe how we can leverage Theorem Theorem 7 to establish sample complexity

bounds for regression on a manifold. Suppose, again, thatM is an m-dimensional smooth,

compact Riemannian manifold. To study the eigenvalues and eigenfunctions of the Laplacian

∆M, we consider the heat kernel kh
t . Our key tool is the following fact:

Lemma 9. Let ϵ ∈ (0, 2/3). Suppose the sectional curvature ofM is bounded above by κ.

For t ≤ 6ϵ
(m−1)2κ

and all x ∈M,

kh
t (x, x) ≤

1 + ϵ

(2πt)m/2
.

This is a precise quantification of the well-known asymptotic behavior of the heat kernel

as t→ 0 (see, e.g., [90, Section VI]). It is derived in Section B.2 from a novel set of more
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general upper and lower bounds for the heat kernel on a manifold of bounded curvature; we

note that these may be of independent interest.

Our nonasymptotic Weyl law is a simple consequence of Lemma 9:

Theorem 8. IfM has sectional curvature bounded above by κ, and ϵ ∈ (0, 2/3), then, for

all x ∈M and λ ≥ m(m−1)2κ
6ϵ

,

Nx(λ) :=
∑
λℓ≤λ

u2
ℓ(x) ≤

2(1 + ϵ)
√
m

(2π)m
Vmλ

m/2.

With appropriate rescaling by vol(M), this gives us a bound on the constant Kp from

Section 4.4.1. Since this result bounds the eigenfunctions, it is a type of “local Weyl law”

(see, e.g., [138]). Integrating this result over M gives a nonasymptotic version of the

traditional Weyl law. Our bound is within the modest factor 2(1 + ϵ)
√
m of the optimal

asymptotic law. For simplicity, we will take ϵ = 1/2 in what follows, but slightly better

constants could be obtained with smaller ϵ.

The following result for the finite-dimensional bandlimited kernel is a straightforward

consequence of Theorems 7 and 8:

Theorem 9. Suppose the sectional curvature of M is bounded above by κ. Let Ω2 ≥
m(m−1)2κ

3
, and suppose f ∗ ∈ Hbl

Ω . Let f̂ be the kernel regression estimate with kernel kbl
Ω .3

Let δ ∈ (0, 1), and suppose n ≥ 7p log 2p
δ

, where

p = p(Ω) :=
3
√
mVm

(2π)m
vol(M) Ωm. (4.3)

Under the same noise assumptions as in Theorem 7, if n
log2 n

≥ C∥ξ∥2ψ1
/σ2, then, with

3The calculation of this estimate is somewhat different than usual, since the rank of the kernel matrix K is
at most the dimension ofHbl

Ω . We do not use regularization, but we use the Moore-Penrose pseudoinverse of
K instead of K−1.
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probability at least 1− 2δ, uniformly in f ∗,

∥f̂ − f ∗∥L2√
vol(M)

≤ 4

√
p+ 2

√
log 4/δ

√
n

σ.

To analyze the heat kernel, which has an infinite number of nonzero eigenvalues, we

need the following additional corollary of Lemma 9, which will let us bound the constant

Rp from Section 4.4.1:

Lemma 10. For ϵ ∈ (0, 2/3), t ≤ 6ϵ
(m−1)2κ

, λ ≥ m/t, and all x ∈M,

∑
λℓ≥λ

e−λℓt/2u2
ℓ(x) ≤ e−λt/2

2(1 + ϵ)
√
m

(2π)m
Vmλ

m/2.

From this, we obtain the following result:

Theorem 10. Suppose the sectional curvature ofM is bounded above by κ. Let t ≤ 3
(m−1)2κ

,

and suppose f ∗ ∈ Hh
t . Fix Ω2 ≥ m/t, and let f̂ be the kernel regression estimate of f ∗ with

kernel kh
t and regularization parameter α ≥ 54 e

−Ω2t/2

vol(M)
.

Let δ ∈ (0, 1), and suppose n ≥ 7p log 4p
δ

, with p defined as in (Equation 4.3).

Under the same noise assumptions as in Theorem 7, if n
log2 n

≥ C∥ξ∥2ψ1
/σ2, then, with

probability at least 1− 2δ, uniformly in f ∗,

∥f̂ − f ∗∥L2√
vol(M)

≤

(
√
2α + 6

√
e−Ω2t/2

vol(M)

)
∥f ∗∥Hh

t
+

9

2

√
p+ 2

√
log 4/δ

√
n

σ.

These results illustrate how we can exploit the effective finite dimension of spaces of

smooth functions on manifolds in regression. This function space dimension (and hence the

sample complexity of regression) grows exponentially in the manifold dimension, rather than

in the larger ambient data dimension, ifM is embedded in a higher-dimensional space. In

practice, the true bandlimited or heat kernels may be difficult to compute. It is an interesting

open question whether we can obtain similar results for manifold-agnostic algorithms (the
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work of [108], although it does not apply to our function classes, is an interesting potential

starting point).

As discussed in Section 4.4.1, our general regression result Theorem 7 is similar to prior

results [133, 134], but it has the advantage of applying even without regularization in the

noiseless case. However, we note that one could obtain results in many ways comparable

(minus this advantage) to Theorems 9 and 10 by plugging Theorem 8 and Lemma 10 into

those previous regression results. We could not do this with classical power-law results such

as [119, 120, 121], since our eigenvalue decay is exponential rather than power-law.

Since the (classical) Weyl law also lower bounds the complexity of spaces of bandlim-

ited functions, then, as discussed in Section 4.4.1, Theorems 9 and 10 (for the optimally

chosen value of Ω) are minimax optimal when there is noise. Furthermore, the requirement

n ≳ p log p is necessary in general: if we consider the torus Tm, recovering arbitrary Ω-

bandlimited functions requires every point on Tm to be within distance O(1/Ω) of a sample

point; considering a uniform grid on Tm and a coupon collector argument makes it clear

that n ≳ O(Ωm log Ωm) randomly sampled points are required.

As mentioned in Section 4.4.1 for general kernel learning, these results could be extended

to consider nonuniform sampling over the manifold.

There are also some very interesting connections between kernel methods and neural net-

works. The recent works [139, 140] show that trained multi-layer neural networks approach,

in the infinite-width limit, a kernel regression function with a “neural tangent kernel” that

depends on the initialization distribution of the weights and the network architecture. This

follows literature on the connections between Gaussian processes (closely related to kernel

methods) and wide neural networks (see, e.g., [141, 142]). It would be very interesting to

explore any potential connections between these and the kernels considered in this work,

which are derived from a manifold’s spectral decomposition.
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CHAPTER 5

HARMLESS INTERPOLATION IN REGRESSION AND CLASSIFICATION WITH

STRUCTURED FEATURES

In this chapter,1 we analyze the phenomenon of harmless interpolation in regression and

classification. Overparametrized neural networks tend to perfectly fit noisy training data

yet generalize well on test data. Inspired by this empirical observation, recent work has

sought to understand this phenomenon of benign overfitting or harmless interpolation in the

much simpler linear model. Previous theoretical work critically assumes that either the data

features are statistically independent or the input data is high-dimensional; this precludes

general nonparametric settings with structured feature maps. In this chapter, we present

a general and flexible framework for upper bounding regression and classification risk in

a reproducing kernel Hilbert space. A key contribution is that our framework describes

precise sufficient conditions on the data Gram matrix under which harmless interpolation

occurs. Our results recover prior independent-features results (with a much simpler analysis),

but they furthermore show that harmless interpolation can occur in more general settings

such as features that are a bounded orthonormal system. Furthermore, our results show an

asymptotic separation between classification and regression performance in a manner that

was previously only shown for Gaussian features.

5.1 Introduction

Overparametrized neural networks tend to perfectly fit, or interpolate, noisy training data.

Somewhat surprisingly, these overparametrized networks also tend to generalize well [144].

More recently, this phenomenon of “harmless interpolation” was also empirically demon-

strated in the much simpler model families of kernel machines [145] and overparametrized

1This work is published in [143].
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Figure 5.1: Interpolation in various regimes. This uses the bi-level Fourier series framework
of Section 5.4.

linear models [146]. These observations have motivated a large body of research that aims

to develop a mathematical understanding of the generalization properties of interpolating

solutions and the impact of fitting noise (see Section 5.1.2 for more related work).

While these theoretical results represent significant progress, they come with some

caveats. Most notably, harmless interpolation has only been shown under (a) strong as-

sumptions on the feature distribution or (b) high dimension of the input data. For example,

the strongest guarantees on harmless interpolation assume that the features consist of inde-

pendent random variables (or are a linear transformation of such a vector). Similarly, the

positive results on consistency of kernel interpolation require the dimension of the input
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data to grow with the size of the training set.

To see why these assumptions may not be realistic, consider the problem of simple linear

regression using a Fourier series model f(x) =
∑

ℓ aℓe
i2πℓx for a function f on the interval

[0, 1], where ℓ may range over all integers or, as we will later assume, a subset {−d, . . . , d}.

Here the input data dimension is 1, and the features are given by vℓ(x) = ej2πℓx. If x is

uniformly distributed, the features {vℓ(x)}ℓ (all evaluated at the same random x), though

uncorrelated, are not independent. In this (and many other) examples, the input data can be

low-dimensional and the features may not be independent. Whether harmless interpolation

is possible with high-dimensional feature maps on such constant-dimensional data remains

an open question. As a first effort, [147] show that harmless interpolation can occur with

structured feature maps with uniformly spaced data, but whether this can be shown for the

more realistic case of randomly-sampled data has remained open.

A second question is how the interpolation phenomenon applies to the classification

problem. For example, [148, 149] show that the max-margin support vector machine can

achieve good performance even when the corresponding regression task does not. These

results require the very strong assumption of independent (sub)Gaussian features. Whether

this asymptotic separation between regression and classification tasks exists in more general

kernel settings is not addressed by this literature.

5.1.1 Our contributions

In this work, we provide new non-asymptotic risk bounds for both regression and classifica-

tion tasks with the standard Hilbert-norm regularizer under minimal regularity assumptions.

Our results apply for an arbitrarily small amount of regularization (including the interpolating

regime) and are summarized below.

Harmless interpolation in kernel regression. For the regression task, we obtain new

non-asymptotic risk bounds on the mean-squared-error of the Hilbert-norm regularized

estimator, which includes the cases of kernel ridge regression and minimum-Hilbert-norm
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interpolation. In Section 5.2.2, we give error bounds for fixed sample locations. In Sec-

tion 5.2.3, we give a variety of concentration results from random sampling that, when

combined with our fixed-sample theorems, yield high-probability guarantees of harmless

interpolation. Our results imply harmless interpolation in significantly more general settings

than previous works (see Section 5.1.2 for a comparison to prior work). Our results recover

existing independent-feature results (e.g., [150]) but also apply to other examples such as

bounded orthonormal systems (BOSs). BOSs include many popular feature ensembles such

as sinusoids and Chebyshev polynomials. Figure 5.1a shows an example of a function

estimate that yields strong regression performance for the case of sinusoidal Fourier basis

features.

Asymptotic separation between kernel classification and regression. We next analyze

the classification error of the minimum-Hilbert-norm interpolator of binary labels. Although

good regression performance implies good classification performance (see Figure 5.1b), the

reverse is not true. In Section 5.3, we derive a simple bound on classification error that can be

much tighter than the bound on regression error, and we present another fixed-sample error

bound useful for bounding the regression risk. Then, for the case of bounded orthonormal

system features, we demonstrate an asymptotic separation between the regression and

classification tasks. Figure 5.1c illustrates how the minimum-norm label interpolator can

have poor regression performance but good classification performance.

5.1.2 Related work

Harmless interpolation. Recent work has shown that the “harmless interpolation” phe-

nomenon becomes more pronounced with increased (effective) overparameterization when

the minimum-Hilbert-norm interpolator is used in kernel regression [177, 178] or the

minimum-norm interpolator is used in linear regression [150, 179, 180, 147, 162, 181, 182,

183, 184, 185, 186, 187, 188, 189, 190, 191] in a variety of models. See [192, 193, 194] for

recent surveys of this line of work.
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All of these models make at least one of the following assumptions: (a) independence of

features [150, 180, 147, 195], (b) sub-Gaussianity in the feature vector [150, 162], (c) high

data dimension [180, 181, 182, 177, 178, 183, 184, 185, 186, 187, 188, 189, 190], or (d)

explicit structure in the kernel operator/feature map [179, 177, 178, 147, 181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191]. For specific kernels like the Laplace kernel, statistically

consistent interpolation may actually require growing data dimension with the number of

training examples [151], as the data dimension fundamentally alters the eigenvalues of the

Laplace kernel integral operator. In contrast, our results do not explicitly posit any of these

assumptions. Our sufficient conditions for harmless interpolation are expressed purely in

terms of the eigenvalues of the kernel integral operator and do not require special structure

either on the eigenfunctions or the integral operator itself.

Classification versus regression. General techniques from statistical learning theory

(e.g., [152, 153]) do not differentiate between classification and regression tasks. However,

the idea that classification is easier than regression is well-known: the main idea is we do

not need near-zero bias, but rather how much signal is recovered only needs to be large

relative to the variance. This idea goes back to [154], and has primarily been used to

obtain faster non-asymptotic rates for classification relative to regression in a number of

scenarios [155, 156, 157]. A separation in statistical consistency between the two tasks was

shown more recently in [148]. Similar sharp analyses for classification error have also been

provided for the related high-dimensional linear discriminant analysis setting [149, 158, 159].

These results all make restrictive assumptions of Gaussianity, independent sub-Gaussian

features, or Gaussian mixture models; the most fine-grained analyses [148, 158] require

Gaussian design. With our more general analysis, we show that the previous restrictive

assumptions can be avoided and demonstrate that the separation between classification

and regression consistency is a general phenomenon. Although our error expressions are

less sharp nonasymptotically than those that assume Gaussian features, the consistency

implications are nearly identical.

90



General kernel regression. Finally, our work continues a substantial literature on

general linear and RKHS regression. Space limitations prevent a comprehensive review,

but we note that our analysis techniques most closely resemble the approach of [133, 134],

who analyze explicitly regularized ridge regression under random design with minimal

assumptions on the data distribution. Other notable works are [119, 120], which also

use techniques based on the kernel integral operator. These works assume a power-law

eigenvalue decay to get power-law regression error bounds. Our results apply to more

general kernels with an arbitrary eigenvalue decay and give a more refined bias-variance

decomposition of error. Significantly, none of these works analyze interpolating solutions in

the presence of noise.

5.2 Kernel regression

Our results are presented in terms of reproducing kernel Hilbert space regression (with

traditional linear regression as a special case). We first introduce the analytical framework

and then present our main results.

5.2.1 Kernel regression introduction

We first review the general theory of regression in reproducing kernel Hilbert spaces. A

more thorough introduction to kernel theory can be found in many standard references, such

as [160], [115], and Chapter 12 of [161].

Let X be a set, and letH be a real reproducing kernel Hilbert space over X with kernel

k : X ×X → R. For f ∈ H and x ∈ X , we have f(x) = ⟨f, kx⟩H, where kx := k(·, x).

Note that this implies that k(x, y) = ⟨kx, ky⟩H.

Suppose f ∗ ∈ H, and we observe yi = f ∗(xi)+ ξi, i = 1, . . . , n, where x1, . . . , xn ∈ X

are sample points, and the ξi’s represent noise or other measurement error. We use the kernel
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ridge regression estimate

f̂ = arg min
f∈H

n∑
i=1

(yi − f(xi))
2 + α∥f∥2H,

where α ≥ 0 is a regularization term. When α → 0, we get the minimum-Hilbert-norm

interpolator,

f̂ = arg min
f∈H

∥f∥H s.t. f(xi) = yi ∀i = 1, . . . , n.

By the standard kernel regression formula, we have f̂(x) =
∑n

i=1 ẑik(x, xi) where the vector

ẑ = (αIn +K)−1y, and K is the kernel Gram matrix with Kij = ⟨kxi , kxj⟩H = k(xi, xj).

We denote by A : H → Rn the sampling operator, which is defined by (A(f))i = f(xi) =

⟨f, kxi⟩H. The adjoint of the sampling operator is given by A∗(z) =
∑n

i=1 zikxi for all

z ∈ Rn. Then the Gram matrix is K = AA∗, and we can write the kernel regression

estimate in terms of the standard ridge regression formulas:

f̂ = A∗(αIn +AA∗)−1y = (αIH +A∗A)−1A∗y.

Note that, in general, the second expression is only well-defined if α > 0 (since A is

rank-deficient ifH is infinite-dimensional).

We analyze two terms in this estimator. The first is the estimator that would be obtained

in the absence of noise, which is given by

f̂0 := A∗(αIn +AA∗)−1Af ∗ = (αIH +A∗A)−1A∗Af ∗.

The second is the contribution to the estimate due to noise, which we denote by the function

ϵ(x). We have

ϵ = A∗(αIn +AA∗)−1ξ,

where ξ = (ξ1, . . . , ξn). This leads to a standard decomposition in the error of the estimator
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f̂ in terms of its bias and variance.

To characterize the test error, we need a sampling model. Let µ be a probability measure

on X . We then define the kernel integral operator T as

(T (f))(x) =
∫
X

k(x, y)f(y) dµ(y)

with respect to the measure µ. Under mild regularity/continuity conditions (see, e.g., [89]

for a thorough analysis), we have the eigenvalue decomposition

T (f) =
∞∑
ℓ=1

λℓ⟨vℓ, f⟩L2vℓ,

where {vℓ}∞ℓ=1 is an orthonormal basis for L2(X,µ), and λ1 ≥ λ2 ≥ λ3 ≥ · · · are the

eigenvalues of T arranged in decreasing order. Furthermore, we have

k(x, y) =
∞∑
ℓ=1

λℓvℓ(x)vℓ(y).

We can handle the finite-dimensional case by setting λℓ = 0 for ℓ > d, where d = dim(H)

(furthermore, the standard linear regression case can be recovered with X = Rd and

k(x, y) = ⟨x, y⟩ℓ2). Note that in order to interpolate an arbitrary set of samples, we need

the dimension d to be at least the number of samples n (otherwise, the linear system is

overdetermined).

We will also use the following well-known fact throughout our analysis: for any f, g ∈

L2, we have

⟨f, g⟩L2 = ⟨T 1/2f, T 1/2g⟩H.

Hence, T 1/2 is an isometry from L2 toH. Note that this implies that for every f ∈ H,

∥f∥2H =
∞∑
ℓ=1

⟨f, vℓ⟩2L2

λℓ
.
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Intuitively, we expect that if f has small/boundedH-norm, most of its energy is captured by

components corresponding to relatively large eigenvalues. Therefore, it is feasible to recover

an accurate (in L2) estimate of f , even though f lies in an infinite-dimensional space.

We will assume x1, . . . , xn
i.i.d.∼ µ, i.e., the training examples are drawn from the same

measure as the test example x ∼ µ. Since we are evaluating a regression task, we wish

to bound the squared (excess) prediction loss E(f̂(x) − f ∗(x))2 = ∥f̂ − f ∗∥2L2
. We will

provide non-asymptotic upper bounds on ∥f̂ − f ∗∥2L2
as a function of the number of training

examples n. We will also focus on understanding scenarios for which we obtain statistical

consistency, i.e., ∥f̂ − f ∗∥2L2
→ 0 as n→∞.

5.2.2 Main results for deterministic sample locations

To state our main results, we introduce some additional notation. Here and for the rest of

this section, p will be a fixed integer that we can tune in our analysis. We divide the function

space L2(X,µ) into two parts: G = span{v1, . . . , vp} denotes the space spanned by the

first p eigenfunctions of T , and G⊥ denotes its orthogonal complement (in both L2 andH).

Accordingly, we split our sampling operator into two parts: AG = A|G and R = A|G⊥ .

Intuitively, if p is chosen such that λp+1, λp+2, . . . are relatively small, we expect G to

contain most of the energy in any given function f ∈ H. A key fact is that the Gram matrix

can be decomposed as AA∗ = AGA∗
G +RR∗. The dimension p is similar to (but more

flexible than) the regularization-dependent effective dimension in [133, 134].

Since p = dim(G) is finite, we can recover a function in G from a finite number of

samples. We state this quantitatively by analyzing the restricted sampling operator AG. To

state concentration results on G in terms of the L2 norm, we denote C = AG, and we let

C∗ = T −1
G A∗

G be its adjoint with respect to the L2 inner product. Note that 1
n
EA∗

GAG = TG,

where TG = T |G. Therefore,
1

n
E C∗C = IG,

where IG is the identity operator on G. Provided that n≫ p, we expect 1
n
C∗C ≈ IG. We
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will analyze how closely this holds later; we first state deterministic results that depend on

the error in this approximation.

The second key approximation regards the “remainder Gram matrix” RR∗. Previous

interpolation literature has assumed that this matrix is approximately a multiple of the

identity In (or is in some sense “well-conditioned”). We will again analyze how accurately

this holds later, but for now, we will state our main results assuming that αIn +RR∗ is

upper and lower bounded by multiples of the identity. There is no requirement that α ≥ 0;

in principle, our framework applies to negative regularization [162], but we do not explore

this aspect in detail.

Finally, we will assume, for simplicity and brevity, that f ∗ ∈ G exactly. If this did

not hold, there would be another term in the “bias” error bound whose size is directly

proportional to the size of PG⊥(f ∗), which in turn is negligible provided that f ∗ ∈ H (i.e.,

f ∗ has boundedH-norm). Note that kernel methods run into fundamental approximation-

theoretic limitations in the absence of a bounded-H-norm assumption [163, 164, 165].

Theorem 11 (Bias). Suppose that

1. αLIn ⪯ αIn +RR∗ ⪯ αUIn for some numbers αU ≥ αL > 0, and

2. αU−αL

αU+αL
+ 2

n
∥C∗C − nIG∥L2

≤ c for some c < 1.

Let ᾱ = 2αUαL

αU+αL
be the harmonic mean of αU and αL. Then, for any f ∗ ∈ G, we have

∥∥∥f̂0 − f ∗
∥∥∥
L2

≲ min

{√
λ1,

1

1− c

ᾱ

n
√
λp

,
1

1− c

√
ᾱ

n

}

×

(
1 +

√
nλp+1

ᾱ

)
∥f ∗∥H.

Theorem 12 (Variance). Suppose the conditions of Theorem 11 hold, and let α̃ = αU+αL

2
.

Furthermore, suppose the ξi’s are zero-mean and independent with variance bounded by σ2.
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Then

Eξ∥ϵ∥2L2
≲ σ2

(
αU
αL

+ 1

)2(
p

n
+

trL2(R∗R)
α̃2

)
. (5.1)

Section 5.2.4 contains simplified proof sketches of Theorems 11 and 12; we provide

complete proofs in Section C.2 in the supplementary material. The reader should note that

our proofs consist of relatively simple linear algebra. Compare this, for example, to [150] or

[148], where the analysis depends delicately on the independence (or, in the latter case, even

Gaussianity) of the features via rather complicated matrix manipulations.

We could also obtain a high-probability (with respect to ξ) bound on the variance (if,

e.g., the ξi’s are sub-Gaussian), but we omit this to preserve the clarity and simplicity of the

result. We outline how one could do this in Section C.2.2.

5.2.3 Operator concentration results

We now state operator concentration results on three important quantities: (a) the deviation

of the residual Gram matrixRR∗ from a multiple of the identity, (b) the quantity trL2(R∗R)

which appears in the variance bound, and (c) the deviation of 1
n
C∗C from IG. All proofs are

contained in Section C.3 in the supplementary material. We begin with our most general

results that apply under minimal assumptions.

General residual concentration

Let kR(x, y) =
∑

ℓ>p λℓvℓ(x)vℓ(y) be the reproducing kernel restricted to G⊥.

Lemma 11 (Generic residual Gram matrix).

E∥RR∗ − (tr TG⊥)In∥2 ≲ n2 tr(T 2
G⊥)

+ ∥kR(·, ·)− tr TG⊥∥2∞,

where ∥kR(·, ·)− tr TG⊥∥∞ = supx{|kR(x, x)− tr TG⊥|}.
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Note for this result to give αLIn ⪯ RR∗ ⪯ αUIn where αU/αL is bounded, we need

tr TG⊥ ≳ n
√
tr(T 2

G⊥). Even when {λℓ}ℓ>p are all equal (see Section 5.3.1), we need

dimH = d ≳ n2. While this may seem restrictive, it is not possible to do better without

additional assumptions on the features. In Section C.4, we show that in the case of Fourier

features, λmax(RR∗)/λmin(RR∗) ≳ n4

τ2d2
with probability at least 1− e−τ , and thus d ≳ n2

is necessary. This can be significantly relaxed when the features are independent, as shown

in Section 5.2.3.

To bound the variance, we will use the following expectation throughout the rest of this

chapter:

Lemma 12 (Generic trace bound onR∗R).

E trL2(R∗R) = n tr(T 2
G⊥) = n

∑
ℓ>p

λ2
ℓ .

Note that Lemma 12, Theorem 12, and the approximate identity RR∗ ≈ (tr TG⊥)In

combine to bound the variance error as ∥ϵ∥2L2
≲ p

n
+ n

(∑
ℓ>p λ

2
ℓ

)
/
(∑

ℓ>p λℓ

)2
. This is

identical to the bound provided in [150].

Bounded orthonormal system

Our results show that harmless interpolation can occur in much more general settings than

independent and/or sub-Gaussian features. An important class of features that are not

independent or sub-Gaussian is a bounded orthonormal system (BOS).

On the subspace G defined before, the basis v1, . . . , vp is a BOS if it is an orthonormal

basis in L2 (as we have already assumed) and, further, we have

p∑
ℓ=1

v2ℓ (x) ≤ Cp

µ-almost surely in x for some constant C ≥ 1. Equivalently, for all f ∈ G, ∥f∥2∞ ≤

97



Cp∥f∥2L2
.

This assumption is satisfied by many popular choices of features including sinusoids

(see Section 5.4), Chebyshev polynomials, and the standard Euclidean basis on Rd. One

can also often show that kernel eigenfunctions satisfy this property, such as when the data

lie on a low-dimensional manifold [83].

It is easy to derive concentration inequalities for bounded orthonormal systems via

matrix/operator concentrations results for sums of bounded independent random matrices

(e.g., [49]—see our supplementary material for details). A bound that is useful for our

purposes is the following:

Lemma 13 (BOS sampling operator on G). If G is spanned by a bounded orthonormal

system with constant C, then, for t > 0, with probability at least 1− e−t,

1

n
∥C∗C − nIG∥L2 ≲

√
Cp(t+ log p)

n
+

Cp(t+ log p)

n
.

Thus if n ≳ Cp log p, we can have, say, 1
n
∥C∗C − nIG∥L2 ≤ 1/4 (or any other small

constant) with high probability.

In general, the Cp log p sample complexity is optimal under the BOS assumption. As a

simple example, consider the following basis {v1, . . . , vp} on Rp (written as functions on

{1, . . . , p}): for uniquely determined constants c1 and c2, set the measure to be µ({j}) = 1
Cp

for j < p and µ({p}) = c1, and set vℓ =
√
Cpδℓ for ℓ < p and vp = c2δp. One can easily

verify by a coupon collector argument that we need O(Cp log p) samples from µ merely to

sample every coordinate at least once.

Independent features

To compare to prior work, we list independent-feature concentration results that can be

plugged into our Theorem 11. Suppose that for x ∼ µ, the features {vℓ(x)} are independent

random variables. The key benefit this gives us is that we can now write the residual Gram
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matrixRR∗ as a sum of independent random rank-1 matrices. To see this, define the vectors

wℓ = (vℓ(x1), vℓ(x2), . . . , vℓ(xn)) ∈ Rn.

We have already been assuming that the entries of each wℓ are independent (since they only

depend on the independent variables xi), but an independent features assumption implies

that the entire set of random vectors {wℓ}ℓ≥1 is independent. We can then write

RR∗ =
∑
ℓ>p

λℓwℓ ⊗ wℓ.

We state a formal result for sub-Gaussian independent features. We expect similar results

hold for much weaker tail conditions.

Lemma 14 (Independent features residual Gram matrix). Suppose the features {vℓ(x)}ℓ≥1

are zero-mean, independent, and sub-Gaussian. Then, for t > 0, with probability at least

1− e−t,

∥RR∗ − (tr TG⊥)In∥ ≲
√
(n+ t) tr(T 2

G⊥) + (n+ t)λp+1.

The zero-mean assumption is for simplicity and can easily be relaxed at the cost of a

more complicated theorem statement. Note that this is stronger than Lemma 11 in two

ways: first, the bound holds with exponentially high probability as opposed to being merely

in expectation. Second, we have effectively replaced the n2 in Lemma 11 by n, greatly

reducing the amount of overparametrization we need.

Note for this result to give αLIn ⪯ RR∗ ⪯ αUIn where αU/αL is bounded, we need

n ≲
tr TG⊥

λp+1

=
1

λp+1

∑
ℓ>p

λℓ

(this also gives us
√

n tr(T 2
G⊥) ≲ tr TG⊥ by Cauchy-Schwartz). This is identical to the

requirement that rk∗(Σ) ≥ bn in [150].

99



We can also obtain slightly improved results (vs. the BOS assumption) for concentration

of C∗C:

Lemma 15 (Sampling operator on G under independent features). With probability at least

1− e−t, ∥∥∥∥ 1nC∗C − IG
∥∥∥∥
L2

≲

√
p+ t

n
+

p+ t

n
.

Thus we only require n ≳ p to obtain the required concentration. For a proof, see, for

example, [53, Section 4.6].

5.2.4 Informal proof sketch (deterministic)

Here we outline the basic proof structure of Theorems 11 and 12. We will perform the

analysis as though αIn+RR∗ = ᾱIn and C∗C = nIG (equivalently, A∗
GA = nTG), and we

will write “≈” where we make these substitutions. The main additional steps we need are to

quantify the error due to these approximations.

Bias term (from signal)

Note that since f ∗ ∈ G, we have

f̂0 = A∗(αIn +AA∗)−1AGf ∗

≈ A∗(ᾱIn +AGA∗
G)

−1AGf ∗

= A∗AG(ᾱIG +A∗
GAG)−1f ∗

≈

A∗
G

R∗

AG(ᾱIG + nTG)−1f ∗.
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From this we obtain

PG(f̂0) = A∗
GAG(ᾱIG + nTG)−1f ∗

≈ nTG(ᾱIG + nTG)−1f ∗

= Sf ∗,

where S := nTG(ᾱIG + nTG)−1 is the idealized “survival” operator, representing the extent

to which the original signal f ∗ is preserved. We then have f ∗ − PG(f̂0) ≈ Bf ∗, where

B := IG − S = ᾱ(ᾱIG + nTG)−1 is the idealized “bias” operator. One can verify that

∥B∥H→L2 ≲ min

{√
λ1,

ᾱ

n
√
λp

,

√
ᾱ

n

}
.

This bounds ∥PG(f̂0)− f ∗∥L2 for Theorem 11; the formal theorem has an extra factor of

1/(1− c) which comes from the approximation errors (recall that c is determined by how

accurate our idealizing approximation are—see the statement of Theorem 11 for the precise

definition).

Next, note that PG⊥(f̂0) ≈ R∗C B
ᾱ
f ∗, where we have substituted C for AG. Because

∥R∗∥ℓ2→L2 ≤ ∥IG⊥∥H→L2∥R∗∥ℓ2→H ≲
√

λp+1ᾱ,

we have

∥∥∥∥R∗CB
ᾱ

∥∥∥∥
H→L2

≤ ∥R∗∥ℓ2→L2∥C∥L2→ℓ2

∥B∥H→L2

ᾱ

≲

√
nλp+1

ᾱ
∥B∥H→L2 ,

which allows us to bound ∥PG⊥(f̂0)∥L2 .
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Variance term (from noise)

Making similar approximations as above (with α̃ instead of ᾱ—the distinction comes from

the approximation arguments we use in the formal proof), we have

ϵ = A∗(αIn +AA∗)−1ξ

≈

A∗
G

R∗

 (α̃In +AGA∗
G)

−1ξ

=

(α̃IG +A∗
GAG)−1A∗

Gξ

R∗(α̃In +AGA∗
G)

−1ξ


≈

 (α̃T −1
G + nIG)−1C∗ξ

R∗(α̃In +AGA∗
G)

−1ξ

 .

Therefore,

Eξ∥ϵ∥2L2
≈ σ2

∥∥∥∥∥∥∥
 (α̃T −1

G + nIG)−1C∗

R∗(α̃In +AGA∗
G)

−1


∥∥∥∥∥∥∥
2

HS,ℓ2→L2

≲ σ2

(
1

n2
trL2(C∗C) +

1

α̃2
trL2(R∗R)

)
≈ σ2

(
1

n2
trL2(nIG) +

1

α̃2
trL2(R∗R)

)
= σ2

(
p

n
+

1

α̃2
trL2(R∗R)

)
.

The factor of αU/αL comes from the approximation arguments.

5.3 Kernel classification

We now consider the case of classification, in which the observation y is a (noisy) binary

label in {−1, 1} with a distribution depending on x. Our approach is to perform ordinary

linear/kernel regression on the binary labels yi with the squared loss function. Although
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this seems counter-intuitive, recent results (e.g., [166]) have shown that training with the

squared-loss is highly competitive with the more common cross-entropy loss function in

practice. Separately, recent results have also shown that regression on binary labels is, in

some interesting overparametrized cases, equivalent to the maximum-margin SVM (e.g.,

[148, 167]). Inspired by these findings, we study the minimum-ℓ2-norm interpolator of the

binary labels {yi}ni=1 and its ensuing classification error.

Through the lens of regression, our target function f ∗ is now replaced by

η∗(x) := E(y | x) = 2P(y = 1 | x)− 1.

The label noise is ξ = y − η∗(x). Note that E[ξ|x] = 0 by definition, and var(ξ | x) =

1− (η∗)2(x). Our assumption on the label noise model is that η∗ ∈ G.

The regression procedure yields an estimator η̂ of η∗. Then, our classification rule is

given by ŷ = sign(η̂). Given a probability distribution µ over x, the excess risk of the

classification rule with respect to the Bayes-optimal classifier is given by

E := P(ŷ ̸= y)− P(y ̸= sign(η∗)).

Standard calculations (see [154]) give

E =

∫
|η∗(x)|1{sign(η̂(x))̸=sign(η∗(x))}dµ(x).

Thus the excess risk is the average of the sign error of η̂ versus η∗ modulated by how

distinguishable the two classes are (which is represented by |η∗|).

To bound E , we decompose our estimate η̂ as

η̂ = sη∗ + η̂r, (5.2)
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where s is a parameter that we can tune in our analysis, and η̂r is the residual. If s > 0, we

have

{sign(η̂) ̸= sign(η∗)} ⊆ {|η̂r| ≥ s|η∗|},

so

E ≤ 1

s

∫
|η̂⊥(x)| dµ(x) =

∥η̂r∥L1

s
≤ ∥η̂r∥L2

s
, (5.3)

where the norm inequality is due to the fact that µ is a probability measure. For reasons that

will shortly become clear, we will call s the survival factor and η̂r the residual.

A first possible choice for the quantities in (Equation 5.2) is s = 1 and η̂r = η̂ − η∗.

This choice yields E ≤ ∥η̂ − η∥L1; therefore, small regression error implies small excess

classification risk. However, we are interested in cases in which the regression error is not

small but the classification error is. To use the bound (Equation 5.3), we would need to

show that we can have the ratio ∥η̂r∥L2/s be very small with a different choice of s≪ 1.

We now show how this can work. We recall the idealized “survival” and “bias” operators

S and B from Section 5.2.4. Note that to bound the regression error we show that η̂ ≈ S(η∗)

and that ∥η∗ − Sη∗∥L2 = ∥Bη∗∥L2 is small. For the classification problem, an interesting

new possibility arises. As a simple example, suppose all the first p eigenvalues λ1, . . . , λp

are identically 1. Then S = n
ᾱ+n
IG. If ᾱ≪ n, then the ideal bias B = ᾱ

ᾱ+n
IG will be small.

However, what if α ≳ n, in which case the bias is not small? We cannot get small regression

error, but for classification, we can apply (Equation 5.3) while choosing s = n
ᾱ+n

. Then, as

long as

∥η̂ − Sη∗∥L2 ≪
n

ᾱ + n
,

we will have small excess classification risk. In Section 5.3.1, we use this observation

to provide sufficient conditions for classification consistency, and demonstrate that these

conditions are significantly weaker than the ones needed to be regression-consistent. This

apporach is qualitatively similar to that of [148], which provides a slightly sharper bound

but relies on a special form of η∗ and Gaussianity of the features. Their techniques do not
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easily extend to a more general setting.

To combine this framework with our previous interpolation results, note that, under our

new notation, η̂ = η̂0 + ϵ, where η̂0 = A∗(AA∗)−1Aη∗ and ϵ = A∗(AA∗)−1ξ. We will

show that η̂0 ≈ Sη∗ and ϵ is small. For the first objective, we present here a more refined

version of Theorem 11 that bounds the error to Sη∗ rather than η∗ itself. This will be used

to characterize the classification error in Section 5.3.1.

Lemma 16 (More refined bias estimate). Under the conditions of Theorem 11 (assuming c

is bounded away from 1 so that (1− c)−1 is subsumed into the constants),

∥η̂0 − Sη∗∥L2 ≲

(
c+

√
nλp+1

ᾱ

)

×min

{
λ1,

ᾱ

n
√
λp

,

√
ᾱ

n

}
∥η∗∥H.

The proof of Lemma 16 is an easy modification of the proof of Theorem 11 (see

Section C.2.1).

5.3.1 Bi-level ensemble asymptotic analysis

We now examine the implications of this refined classification analysis in a bounded or-

thonormal system (BOS). In particular, suppose that the eigenfunctions are all bounded (e.g.,

a Fourier series for periodic functions on an interval). For the eigenvalues, we consider

the bi-level ensemble as defined in [148] with non-negative parameters n, β, q, r (where

β > 1 and r < 1). This ensemble contains d = nβ features, of which p = nr have “large”

eigenvalues, and the remaining d − p eigenvalues are small and their relative magnitude

depends on the parameter q. Specifically, we set

λℓ =


1, 1 ≤ ℓ ≤ p

n−(β−r−q), p < ℓ ≤ d.

(5.4)
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We require q < β − r to ensure that the “small” eigenvalues are actually smaller than 1.

Corollary 3. Consider the bi-level ensemble with parameters n, β, q, r, and suppose that

the eigenfunctions are all bounded by an absolute constant. Further, suppose that β > 2

and r < 1, and η∗ ∈ G. Then we obtain the following asymptotic results as n→∞:

1. If q < 1− r, as n→∞, ∥η̂− η∗∥L2 → 0 in probability, and therefore both regression

and classification are consistent.

2. If q > 1 − r, ∥η̂∥L2 → 0 in probability, and therefore regression is inconsistent for

nonzero η∗.

3. If q < 3
2
(1− r) and β > 2(r+ q), excess classification risk E → 0 in probability, that

is, classification is consistent.

Corollary 3 is proved in Section C.5. Note that we have an asymptotic separation

between classification and regression when 1− r < q < 3
2
(1− r). This is comparable to

the results of [148], which allow slightly larger q and smaller β but require much stronger

feature assumptions.

We use the bi-level ensemble model in (Equation 5.4) for simplicity; however, we can

obtain non-asymptotic bounds on the classification risk under more general assumptions.

For a fixed value of p := nr, our analysis allows the tail eigenvalues corresponding to indices

p < ℓ ≤ d to be non-uniform. The requirement that the top p eigenvalues are the same

is somewhat more stringent; in general, when the eigenvalues are different, the survival

operator S is not a multiple of the identity. This could lead to qualitatively different behavior,

as now η̂ may be distorted from η∗ due to differences in the eigenvalues of TG. This problem

disappears in the case that either (a) η∗ is proportional to a single eigenfunction or (b) the

first p eigenvalues of T are identical (both of which hold in [148]). We analyze further the

extent to which we can bound the classification risk when neither of these assumptions

holds in Section C.6. Our analysis method requires λp to be close to λ1 to obtain significant

gains for classification over regression.
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5.4 Numerical experiments

We now perform numerical experiments to demonstrate how the parameters β, r, and q of

the bi-level ensemble model affect regression and classification performance. We consider

the case of Fourier features vℓ(x) = ej2πℓx for ℓ = −d, . . . , d over x ∈ [0, 1] with the

uniform sampling measure, and the bi-level ensemble as defined in (Equation 5.4). The

corresponding kernel function is

k(x, y) =
d∑

ℓ=−d

λℓvℓ(x)vℓ(y)

= (1− n−(β−r−q))Dp(x− y)

+ n−(β−r−q)Dd(x− y),

where Dm(t) =
sin[(2m+1)πt]

sin(πt)
is the Dirichlet sinc function. We consider three cases for the bi-

level ensemble parameters: (β, r, q) = (2.6, 0.3, 0.3), (2.6, 1/3, 5/6), and (2.6, 0.8, 0.45).

We sweep over several values of n between 10 and 3162. For each n, we generate an

η∗ ∈ span{vℓ}pℓ=−p, scaled such that max
x∈[0,1]

|η∗(x)| = 1.

We first attempt to reconstruct η∗(x) from noisy samples yreg
i = η∗(xi) + ξi for i =

1, . . . , n where ξi are i.i.d. N (0, 1). We use the kernel ridge regression estimator η̂∗
reg

=

A∗(αIn +AA∗)−1yreg with a regularization parameter of α = 10−3. We then measure the

relative L2 error of the estimate, i.e., E reg = ∥η∗ − η̂reg∥2L2
/∥η∗∥2L2

.

We also attempt to reconstruct η∗(x) from binary observations yclass
i = +1 with proba-

bility (1 + η∗(xi))/2 and −1 with probability (1− η∗(xi))/2 for i = 1, . . . , n. We use the

estimator η̂class = A∗(αIn +AA∗)−1yclass with a regularization parameter of α = 10−3. We

then measure the relative excess risk, i.e.,

E class =

∫
|η∗(x)|1{sign(η̂class(x))̸=sign(η∗(x))} dx∫

|η∗(x)| dx
.
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Figure 5.2: Relative L2 errors versus n and the relative classification excess risks versus n
for each of the three sets of bi-level ensemble parameters (averaged over 100 trials).

The above procedure is repeated over 100 trials. In Figure 5.2, we plot the relative L2 error

(averaged over 100 trials) versus n and the relative excess risk (averaged over 100 trials)

versus n for each of the three sets of values for β, r, q. In the first case where β = 2.6,

r = 0.3, and q = 0.3, we have r + q < 1 and both E reg and E class decrease as n increases. In

the second case where β = 2.6, r = 1/3, and q = 5/6, we have 1− r < q < 3
2
(1− r) and

β > 2r + 2q, and E class decreases as n increases, but E reg does not decrease as n increases.

In the third case where β = 2.6, r = 0.8, and q = 0.45, we have that r + q > 1, and

q > 3
2
(1− r), and both E reg and E class do not decrease as n increases.

5.5 Discussion

In this work we showed that under minimal assumptions on the data and feature map (a)

harmless interpolation of noise in data is possible, and (b) we can be classification-consistent

in high-dimensional regimes where we are not regression-consistent. Important future direc-

tions include considering more general function models (e.g., any f ∗ ∈ H or even f ∗ ̸∈ H),

better understanding the implications of distortion among the top eigenfunctions in classifica-
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tion error, and improving the non-asymptotic rates for classification risk from Section 5.3.1.

Another intriguing question is whether there is an equivalence between interpolating binary

labels and the max-margin SVM (as shown in [148, 167]) in the more general settings

considered in this work. Finally, it would be very interesting to study whether our upper

bounds (particularly for classification) can be matched by non-asymptotic lower bounds.
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APPENDIX A

PHASE RETRIEVAL AND PCA ANALYSIS

A.1 Detailed analysis of mixed norm

In this section, we explore several important properties of the mixed norm ∥·∥∗,s.

First, we show that matrices with small mixed norm can be written as a convex combina-

tion of sparse rank-1 matrices.

Lemma 17. For any matrix A, we can write A =
∑

aiui ⊗ vi, where each ui and vi has

unit ℓ2 norm and is s-sparse, and
∑
|ai| ≤ 2∥A∥∗,s.

Proof. Because ∥·∥∗,s is defined as an atomic norm over rank-1 atoms, it suffices to prove

the result for rank-1 A. Therefore, we will show that any rank-1 matrix x⊗ y can be written

as x⊗ y =
∑

ui ⊗ vi, where each ui and vi is s-sparse, and
∑
∥ui∥2∥vi∥2 ≤ 2θs(x, y).

Indeed, a standard result from sparsity theory (see, e.g., Exercise 10.3.7 in [53]) says

that any vector z can be written as z =
∑

zi, where each zi is s-sparse, and
∑
∥zi∥2 ≤

∥z∥2 + 1√
s
∥z∥1. Applying this to both x and y, we have

x⊗ y =

(∑
i

xi

)(∑
j

yj

)
=
∑
i,j

xi ⊗ yj,

where each xi and yj is s-sparse, and

∑
i,j

∥xi∥2∥yj∥2 =

(∑
i

∥xi∥2

)(∑
j

∥yj∥2

)

≤
(
∥x∥2 +

∥x∥1√
s

)(
∥y∥2 +

∥y∥1√
s

)
≤ 2θs(x, y).
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This result is useful because it immediately implies the following:

Corollary 4. For any matrix Z,

sup
∥A∥∗,s≤1

⟨Z,A⟩HS ≤ 2 sup
∥u∥2,∥v∥2≤1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩.

Next, we consider the subgradients of ∥·∥∗,s on Rp×p at a point B = β ⊗ β. Let

I ⊂ {1, . . . , p} denote the indices for which the entries of β are nonzero. With some abuse

of notation, we also write I as the subspace of Rp×p whose matrices are zero except at

entries (i, j) ∈ I × I . We also denote T = {x⊗ β + β ⊗ y : x, y ∈ Rp}.

According to [80, Proposition 1], a matrix W ∈ ∂∥B∥∗,s if the following two properties

hold:

1. ⟨Wβ, β⟩ = θs(β, β), and

2. ⟨Wu, v⟩ ≤ θs(u, v) for all u, v ∈ Rp.

The matrix Wβ := β⊗2

∥β∥22
+ 1

s
(sign β)⊗2 clearly satisfies these properties. However, as with

the subgradients of the ordinary nuclear norm, a much broader set of matrices satisfies these

properties:

Lemma 18. Suppose β is s-sparse. Any matrix of the form W = Wβ +Wβ,⊥ ∈ ∂∥B∥∗,s if

Wβ,⊥ ∈ T⊥ ∩ I⊥, and ⟨Wβ,⊥u, v⟩ ≤ 1
2
θs(u, v) for all u, v ∈ Rp.

Proof. Note that the first subgradient property above holds because it does for Wβ and

Wβ,⊥ ∈ T⊥. To show that property 2 above holds, note that for any u, v ∈ Rp,

⟨Wβu, v⟩ =
⟨β, u⟩⟨β, v⟩
∥β∥22

+
1

s
⟨sign β, u⟩⟨sign β, v⟩

≤ ∥Pβu∥2∥Pβv∥2 +
1

s
∥PIu∥1∥PIv∥1

≤ 1

2

(
∥Pβu∥22 + ∥Pβv∥22 +

∥PIu∥21
s

+
∥PIv∥21

s

)
,
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where Pβ denotes the projection onto the (1-dimensional) subspace spanned by β. Using

the shorthand β⊥ to denote the subspace of Rp orthogonal to β, note that

PT⊥∩I⊥(u⊗ v) = PI⊥(u)⊗ PI⊥(v) + PI∩β⊥(u)⊗ PI⊥(v) + PI⊥(u)⊗ PI∩β⊥(v).

Then

⟨Wβ,⊥u, v⟩ = ⟨Wβ,⊥, u⊗ v⟩HS

= ⟨Wβ,⊥,PT⊥∩I⊥(u⊗ v)⟩HS

= ⟨Wβ,⊥,PI⊥(u)⊗ PI⊥(v)⟩HS + ⟨Wβ,⊥,PI∩β⊥(u)⊗ PI⊥(v)⟩HS

+ ⟨Wβ,⊥,PI⊥(u)⊗ PI∩β⊥(v)⟩HS

≤ 1

2

[
θs(PI⊥(u),PI⊥(v)) + θs(PI∩β⊥(u),PI⊥(v)) + θs(PI⊥(u),PI∩β⊥(v))

]
=

1

2

[
∥PI⊥(u)∥22 + ∥PI⊥(v)∥22 +

∥PI⊥(u)∥21
s

+
∥PI⊥(v)∥21

s

]
+

1

4

[
∥PI∩β⊥(u)∥22 + ∥PI∩β⊥(v)∥22 +

∥PI∩β⊥(u)∥21
s

+
∥PI∩β⊥(v)∥21

s

]
≤ 1

2

[
∥PI⊥(u)∥22 + ∥PI⊥(v)∥22 +

∥PI⊥(u)∥21
s

+
∥PI⊥(v)∥21

s

+ ∥PI∩β⊥(u)∥22 + ∥PI∩β⊥(v)∥22
]

=
1

2

[
∥Pβ⊥(u)∥22 + ∥Pβ⊥(v)∥22 +

∥PI⊥(u)∥21
s

+
∥PI⊥(v)∥21

s

]
,

where the last inequality follows from the fact that the ℓ1 norm of an s-sparse vector is at

most
√
s times the ℓ2 norm. Since

∥PI(u)∥21 + ∥PI⊥(u)∥21 ≤ (∥PI(u)∥1 + ∥PI⊥(u)∥1)2 = ∥u∥21,

we obtain

⟨(Wβ +Wβ,⊥)u, v⟩ ≤ θs(u, v).
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It is much easier to verify the following:

Lemma 19. Every matrix of the form W = Wβ +W⊥, where either

1. W⊥ ∈ I⊥ and ∥W⊥∥∞,∞ ≤ 1/s, i.e., ⟨W⊥u, v⟩ ≤ 1
s
∥u∥1∥v∥1 = 1

s
∥u⊗ v∥1,1 for all

u, v ∈ Rp or

2. W⊥ ∈ T⊥ and ∥W⊥∥ ≤ 1, i.e., ⟨W⊥u, v⟩ ≤ ∥u∥2∥v∥2 for all u, v ∈ Rp,

satisfies W ∈ ∂∥β∥∗,s.

Proof. Since W⊥ ⊥ β⊗β for both choices of W⊥, the first subgradient property (⟨Wβ, β⟩ =

θs(β, β)) clearly holds.

To prove case 1, let W⊥ ∈ I⊥ and∥W⊥∥∞,∞ ≤ 1/s. Then

⟨Wu, v⟩ = ⟨Wβu, v⟩+ ⟨W⊥, u⊗ v⟩HS

≤ ∥u∥
2
2 + ∥v∥22
2

+
∥PI(u⊗ v)∥1,1

s
+
∥PI⊥(u⊗ v)∥1,1

s

=
∥u∥22 + ∥v∥22

2
+

1

s
∥u⊗ v∥1,1

≤ ∥u∥
2
2 + ∥v∥22
2

+
∥u∥21 + ∥v∥21

2s

= θs(u, v).

Similarly, for case 2, let W⊥ ∈ T⊥ and ∥W⊥∥ ≤ 1. Then

⟨Wu, v⟩ = ⟨Wβu, v⟩+ ⟨W⊥, u⊗ v⟩HS

≤ ∥Pβ(u)∥
2
2 + ∥Pβ(v)∥22
2

+
∥u∥21 + ∥v∥21

2s
+ ∥Pβ⊥(u)∥2∥Pβ⊥(v)∥2

≤ ∥Pβ(u)∥
2
2 + ∥Pβ(v)∥22
2

+
∥u∥21 + ∥v∥21

2s
+
∥Pβ⊥(u)∥22 + ∥Pβ⊥(v)∥22

2

= θs(u, v).
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A.2 An empirical process bound

We will use the following bound several times:

Lemma 20. Let (γ1, ϵ1), . . . , (γn, ϵn) be i.i.d. copies of (γ, ϵ), where, for some σ2, M , and

η, we have, for all u ∈ Rp, that ϵ⟨γ, u⟩ is zero-mean,

E(ϵ⟨γ, u⟩2)2 ≤ σ2∥u∥22,

and

∥ϵ⟨γ, u⟩2∥α ≤Mαη+1∥u∥22

for all α ≥ 3. Let Z = 1
n

∑n
i=1 ϵiγi ⊗ γi. Then, for any integer s ≥ 1, with probability at

least 1− e−s(s/p)s,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

,

where c ≈ 1
s log(ep/s)

.

Furthermore, taking ϵ = 1 in the above moment bounds, the same empirical process

bound holds for the matrix

Z =
1

n

n∑
i=1

γi ⊗ γi − E γ ⊗ γ.

Proof. We only prove the first bound, since the second can be proved similarly and also

follows from the first by a symmetrization argument.

We first consider the random variable ⟨Zu, v⟩ for fixed unit-norm u and v. We have

⟨Zu, v⟩ = 1

n

n∑
i=1

ϵi⟨γi, u⟩⟨γi, v⟩.

This is the sum of independent, zero-mean random variables. Note that by the Cauchy-
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Schwartz inequality,

E(ϵi⟨γi, u⟩⟨γi, v⟩)2 ≤ σ2

and, for α ≥ 3,

∥ϵi⟨γi, u⟩⟨γi, v⟩∥α ≤Mαη+1.

Then, by [168, Theorem 3.1], for any δ > 0, with probability at least 1− δ,

⟨Zu, v⟩ ≲ σ

√
log δ−1

n
+

Mαη+1

n1−1/α
δ−1/α.

We then use a covering argument similar to that in [169]. Let J1 and J2 be any two subspaces

of s-sparse vectors in Rp. The unit sphere SJi in Ji can be covered within a resolution of

1/4 by at most 9s points ([53, Corollary 4.2.13], for example). Let NJ1 ,NJ2 be optimal

1/4-covering sets. For each x ∈ SJi , let ni(x) be the closest point in NJi . Then

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩ = sup
u∈SJ1
v∈SJ2

⟨Zn1(u), n2(v)⟩+ ⟨Z(u− n1(u)), v⟩+ ⟨Zn1(u), v − n2(v)⟩

≤ max
u∈NJ1
v∈NJ2

⟨Zu, v⟩+ 1

2
sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩,

so

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩ ≤ 2 max
u∈NJ1
v∈NJ2

⟨Zu, v⟩.

Let

N =
⋃

s-sparse J1, J2

NJ1 ×NJ2 .
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Clearly,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ = sup
s-sparse J1, J2

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩

≤ 2 max
(u,v)∈N

⟨Zu, v⟩.

There are
(
p
s

)
≤
(
ep
s

)s
s-sparse subspaces of Rp, so |N | ≤

(
9s
(
ep
s

)s)2.
By a union bound and substituting δ above with δ/|N |, we then have, for any δ > 0,

with probability at least 1− δ,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

log δ−1

n
+

Mαη+1

n1−1/α

(
Cp

s

)2s/α

δ−1/α.

Taking δ = e−s(s/p)s and α ≈ s log Cp
s

, we get, with probability at least 1− e−s(s/p)s,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

.

A.3 Proof of sparse phase retrieval error bound

Throughout this section, let T and I be as in Section A.1 for β = β∗. First, we need the

following lower bound on the empirical L2 loss:

Lemma 21. Let x1, . . . , xn be i.i.d. copies of a random vector x satisfying Assumption 1,

and let Xi = xi ⊗ xi. Suppose

n ≳ s log
ep

s
,

and let C ≥ 1 be a fixed constant. With probability at least 1 − e−n, the following event
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holds: For all A ∈ Rp×p such that

∥PI⊥(A)∥∗,s + ∥PI(A)∥∗ ≤ C∥A∥F ,

we have
1

n

n∑
i=1

⟨Xi, A⟩2HS ≳ ∥A∥2F ,

where the constant in the lower bound depends on C.

Proof. If X = x⊗ x, by a straightforward calculation, for any p× p matrix A,

E⟨X,A⟩2HS =
∑
i ̸=j

AiiAjj E(x
i)2(xj)2 + 2

∑
i ̸=j

A2
ij E(x

i)2(xj)2 +
∑
i

A2
iiE(x

i)4.

Using the facts that E(xi)2 = 1 for each i and xi and xj are independent when i ̸= j, we

have

E⟨X,A⟩2HS =
∑
i,j

AiiAjj + 2
∑
i ̸=j

A2
ij +

∑
i

A2
ii(E(x

i)4 − 1)

≥ (trA)2 +min{2,E(x1)4 − 1}∥A∥2F

≳ ∥A∥2F .

The last inequality uses the assumption that E(x1)4 > 1.

By the Hanson-Wright inequality for sub-Gaussian vectors [170], we have

E(⟨X,A⟩2HS − E⟨X,A⟩2HS)
2 ≲ ∥A∥4F ,

so E⟨X,A⟩4HS ≲ (E⟨X,A⟩2HS)
2. By the Paley-Zygmund inequality, we then have, for some

c1, c2 > 0,

inf
A∈Rp×p

P(|⟨X,A⟩HS| ≥ c1∥A∥F ) ≥ c2.

The remainder of the proof is a small-ball argument ([171]; see also [172] for an excellent

118



introduction).

Let

S = {A ∈ Sp : ∥A∥F = 1; ∥PI⊥(A)∥∗,s + ∥PI(A)∥∗ ≤ C}.

We will prove that

inf
A∈S

1

n

n∑
i=1

⟨Xi, A⟩2HS ≥ c

with high probability for some constant c > 0.

By [172, Proposition 5.1], for any t > 0, we have, with probability at least 1− e−t
2/2,

inf
A∈S

√√√√ 1

n

n∑
i=1

⟨Xi, A⟩2HS ≳ c1c2 − 2E sup
A∈S

(
1

n

n∑
i=1

εi⟨Xi, A⟩HS

)
− 1√

n
c1t,

where ε1, . . . , εn are i.i.d. Rademacher random variables independent of everything else.

Writing A = PI(A) + PI⊥(A) and setting Z = 1
n

∑n
i=1 εiXi, we have, by Corollary 4,

⟨Z,A⟩HS ≲ (∥PI⊥(A)∥∗,s + ∥PI(A)∥∗) sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩.

Combining the assumptions on A with Lemma 20, we have

E sup
A∈S
⟨Z,A⟩HS ≲

√
s log(ep/s)

n
+

s log(ep/s)

n
.

Choosing n large enough and t ≈
√
n completes the proof.

Now, we are ready to prove the main theorem.

Proof of Theorem 5. Let B̂ be the solution to (Equation 3.6). Writing F (B) as the objective

function, the convexity of the optimization problem implies that

0 ≤ ⟨∇F (B̂), B∗ − B̂⟩HS =
1

n

n∑
i=1

(yi − ⟨Xi, B̂⟩HS)⟨Xi, B̂ −B∗⟩HS + λ⟨WB̂, B
∗ − B̂⟩HS,

119



for any WB̂ ∈ ∂∥B̂∥∗,s. By the monotonicity of (sub)gradients of convex functions, we have

that, for any W ∈ ∂∥B∗∥∗,s, ⟨W −WB̂, B
∗ − B̂⟩HS ≥ 0, and therefore

0 ≤ 1

n

n∑
i=1

(yi − ⟨Xi, B̂⟩HS)⟨Xi, B̂ −B∗⟩HS + λ⟨W,B∗ − B̂⟩HS.

Let H = B̂ − B∗. Using the fact that (yi − ⟨Xi, B̂⟩HS)⟨Xi, B̂ − B∗⟩HS = ξi⟨Xi, H⟩HS −

⟨Xi, H⟩2HS, we have

1

n

n∑
i=1

⟨Xi, H⟩2HS ≤
1

n

n∑
i=1

ξi⟨X,H⟩HS + λ⟨W,−H⟩HS.

From Lemmas 18 and 19 and the convexity of subgradients, we can take

W = W1 +W2 +W3 +W4,

where W1 =
β∗⊗β∗

∥β∗∥22
+ (signβ∗)⊗2

s
, W2 satisfies ⟨W2, H⟩HS = 1

4
∥PT⊥∩I⊥(H)∥∗,s, W3 satisfies

⟨W3, H⟩HS = 1
4s
∥PI⊥∥1,1, and W4 satisfies ⟨W3, H⟩HS = 1

4
∥PI∩T⊥(H)∥∗.

Note that W1 ∈ I , and ∥W1∥F ≤ 2, so ⟨W1, H⟩HS ≤ 2∥PI(H)∥F . Then

1

n

n∑
i=1

⟨Xi, H⟩2HS ≤
1

n

n∑
i=1

ξi⟨X,H⟩HS

+ λ

(
2∥PI(H)∥F −

1

4
∥PT⊥∩I⊥(H)∥∗,s −

1

4s
∥PI⊥(H)∥1,1 −

1

4
∥PI∩T⊥(H)∥∗

)
.

(A.1)

Note that because PT∩I⊥(H) has the form β∗ ⊗ u+ u⊗ β∗ where u ∈ I⊥, we have

∥PT∩I⊥(H)∥∗,s = ∥PT∩I⊥(H)∥∗ +
1

s
∥PT∩I⊥(H)∥1,1

≤ ∥PT∩I⊥(H)∥∗ +
1

s
∥PI⊥(H)∥1,1 + ∥PT⊥∩I⊥(H)∥∗,s
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and therefore

∥PI⊥(H)∥∗,s ≤ ∥PT∩I⊥(H)∥∗,s + ∥PT⊥∩I⊥(H)∥∗,s

≤ ∥PT∩I⊥(H)∥∗ +
1

s
∥PI⊥(H)∥1,1 + 2∥PT⊥∩I⊥(H)∥∗,s.

For large enough λ chosen as in the theorem statement, Corollary 4 and Lemma 20 give,

with high probability,

n∑
i=1

ξi⟨X,H⟩HS ≤
λ

16
(∥PI(H)∥∗ + ∥PI⊥(H)∥∗,s)

≤ λ

16

(
∥PI(H)∥∗ + ∥PT∩I⊥(H)∥∗ +

1

s
∥PI⊥(H)∥1,1 + 2∥PT⊥∩I⊥(H)∥∗,s

)
.

On this event, using (Equation A.1) and noting that ∥PI(H)∥F ≤ ∥H∥F , ∥PT∩I⊥(H)∥∗ ≤
√
2∥H∥F , and

∥PI∩T⊥(H)∥∗ ≥ ∥PI(H)∥∗ − ∥PI∩T (H)∥∗ ≥ ∥PI(H)∥∗ −
√
2∥H∥F ,

we have
1

n

n∑
i=1

⟨Xi, H⟩2HS ≲ λ(C∥H∥F − ∥PI⊥(H)∥∗,s − ∥PI(H)∥∗)

for a modest constant C. Since the left-hand side is nonnegative, ∥PI⊥∥∗,s + ∥PI(H)∥∗ ≤

C∥PI(H)∥F . By Lemma 21, we then have, with high probabability, 1
n

∑n
i=1⟨Xi, H⟩2HS ≳

∥H∥2F . Thus

∥H∥2F ≲ λ∥H∥F ,

which completes the proof.
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A.4 Proof of sparse PCA error bound

Proof of Theorem 6. By a similar argument to that in the proof of Theorem 5 in Section A.3,

the solution to (Equation 3.7) satisfies

⟨Σ̂,−H⟩HS ≤ λ⟨W,−H⟩HS,

for H = P̂ − P1 and any W ∈ ∂∥P1∥∗,s. Choosing W as in the proof of Theorem 5, we

obtain

⟨Σ̂,−H⟩HS ≤ λ

(
2∥PI(H)∥F −

1

4
∥PT⊥∩I⊥(H)∥∗,s −

1

4s
∥PI⊥(H)∥1,1 −

1

4
∥PI∩T⊥(H)∥∗

)
.

We first consider the difference between ⟨Σ̂, H⟩HS and ⟨Σ, H⟩HS. Since the distribution

of Σ̂ is independent of µ, we assume, without loss of generality, that µ = 0. We write

xi = Σ1/2zi, where zi ∼ N (0, Ip), and Σ1/2 =
√
σ1v1 ⊗ v1 + Σ

1/2
2 . We therefore want to

bound

⟨Σ̂− Σ, H⟩HS = ⟨Σ1/2(Z − Ip − z̄ ⊗ z̄)Σ1/2, H⟩HS,

where Z = 1
n

∑n
i=1 zi ⊗ zi and z̄ = 1

n

∑n
i=1 zi.

Denote byP(v1⊗v1)⊥ the orthogonal projection onto the orthogonal complement of v1⊗v1.

We can write

H = ⟨Hv1, v1⟩v1 ⊗ v1 + P(v1⊗v1)⊥(H).
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First, for all t ≤ n, with probability at least 1− e−t,

∣∣∣⟨Σ̂− Σ, v1 ⊗ v1⟩HS

∣∣∣ = σ1

∣∣∣∣∣ 1n
n∑
i=1

(⟨zi, v1⟩2 − 1)− ⟨z̄, v1⟩2
∣∣∣∣∣

≤ σ1

∣∣∣∣∣ 1n
n∑
i=1

(⟨zi, v1⟩2 − 1)

∣∣∣∣∣+ ⟨z̄, v1⟩2
≲ σ1

(√
t

n
+

t

n

)

≲ σ1

√
t

n
,

where the second-to-last inequality follows from applying a Bernstein inequality to the sum

and an ordinary Gaussian tail bound to the N (0, 1/n) random variable ⟨z̄, v1⟩.

To analyze the remainder, we write

⟨P(v1⊗v1)⊥(H), Σ̂− Σ⟩HS = ⟨H,P(v1⊗v1)⊥(Σ̂)− Σ2⟩HS.

Since

P(v1⊗v1)⊥(x⊗ x) =
√
σ1⟨z, v1⟩(v1 ⊗ (Σ

1/2
2 z) + (Σ

1/2
2 z)⊗ v1) + (Σ

1/2
2 z)⊗2,
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we obtain, if t′ ≤ n, with probability at least 1− e−t
′ ,

⟨(P(v1⊗v1)⊥(Σ̂)− Σ2)u, v⟩ =
1

n

n∑
i=1

√
σ1⟨zi, v1⟩

(
⟨v1, u⟩⟨zi,Σ1/2

2 v⟩+ ⟨v1, v⟩⟨zi,Σ1/2
2 u⟩

)
+

1

n

n∑
i=1

⟨(zi ⊗ zi − Ip)Σ
1/2
2 u,Σ

1/2
2 v⟩

−
√
σ1⟨z̄, v1⟩

(
⟨v1, u⟩⟨z̄,Σ1/2

2 v⟩+ ⟨v1, v⟩⟨z̄,Σ1/2
2 u⟩

)
− ⟨(z̄ ⊗ z̄)Σ

1/2
2 u,Σ

1/2
2 v⟩

≲ (
√
σ1σ2 + σ2)

(√
t′

n
+

t′

n

)
∥u∥2∥v∥2

≲
√
σ1σ2

√
t′

n
∥u∥2∥v∥2

for fixed u, v ∈ Rp, where we have used the fact that all terms except the last are zero-

mean. Applying the argument of Lemma 20, if n ≳ s log ep
s

, then, with probability at least

1− e−s(s/p)s,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨(P(v1⊗v1)⊥(Σ̂)− Σ2)u, v⟩ ≲
√
σ1σ2

√
s log(ep/s)

n
.

Using Corollary 4, we have with probability at least 1− e−t − e−s(s/p)s

⟨Σ̂− Σ, H⟩HS ≲

√
t

n
σ1|⟨Hv1, v1⟩|+

√
s log(ep/s)

n

√
σ1σ2∥H∥∗,s.

Note that |⟨Hv1, v1⟩| = 1− ⟨P̂ v1, v1⟩. Also,

∥H∥∗,s ≤ ∥PI(H)∥∗,s + ∥PI⊥(H)∥∗,s

≲ ∥PI(H)∥∗ + ∥PI⊥(H)∥∗,s,

where the second inequality is due to the fact that any matrix in I has nonzero entries in at

most s columns and rows.

124



Combining everything so far, we have

⟨Σ, P1 − P̂ ⟩HS − σ1

√
t

n
(1− ⟨P̂ v1, v1⟩)

≲
√
σ1σ2

√
s log(ep/s)

n
(∥PI(H)∥∗ + ∥PI⊥(H)∥∗,s)

+ λ

(
∥H∥F − ∥PT⊥∩I⊥(H)∥∗,s −

1

s
∥PI⊥(H)∥1,1 − ∥PI∩T⊥(H)∥∗

)
.

By a similar argument to that in the proof of Theorem 5, choosing λ ≳
√
σ1σ2

√
s log(ep/s)

n

gives

⟨Σ, P1 − P̂ ⟩HS − σ1

√
t

n
(1− ⟨P̂ v1, v1⟩) ≲ λ∥H∥F .

Now, note that if
√

t
n
≲ σ1−σ2

σ1
, then

⟨Σ, P1 − P̂ ⟩HS − σ1

√
t

n
(1− ⟨P̂ v1, v1⟩)

= σ1(1− ⟨P̂ v1, v1⟩)− ⟨Σ2, P̂ ⟩HS − σ1

√
t

n
(1− ⟨P̂ v1, v1⟩)

≥ σ1

(
1−

√
t

n

)
(1− ⟨P̂ v1, v1⟩)− σ2∥PT⊥(P̂ )∥∗

=

(
σ1 − σ2 − σ1

√
t

n

)
(1− ⟨P̂ v1, v1⟩) + σ2(1− ⟨P̂ v1, v1⟩ − ∥PT⊥(P̂ )∥∗)

≳ (σ1 − σ2)(1− ⟨P̂ v1, v1⟩) + σ2(1− ⟨P̂ v1, v1⟩ − ∥PT⊥(P̂ )∥∗)

≥ (σ1 − σ2)(1− ⟨P̂ v1, v1⟩)

where the last inequality follows from

0 ≥ ∥P̂∥∗ − 1

= ∥P̂∥∗ − ∥P1∥∗

≥ ⟨P̂ − P1, v1 ⊗ v1⟩HS + ∥PT⊥(P̂ )∥∗

= ⟨P̂ v1, v1⟩+ ∥PT⊥(P̂ )∥∗ − 1.
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Therefore, requiring n ≳
(

σ1
σ1−σ2

)2
t, we have

1− ⟨P̂ v1, v1⟩ ≲
λ

σ1 − σ2

∥H∥F . (A.2)

Note that we can write

P̂ = av1 ⊗ v1 + v1 ⊗ u+ w ⊗ v1 + PT⊥(P̂ ),

where a = ⟨P̂ v1, v1⟩ and u, v ⊥ v1. Then

1 ≥ ∥P̂∥2∗ ≥ ∥P̂∥2F = a2 + ∥u∥22 + ∥w∥22 + ∥PT⊥(P̂ )∥2F ,

and therefore

∥H∥2F = (1− a)2 + ∥u∥22 + ∥w∥22 + ∥PT⊥(P̂ )∥2F

≤ (1− a)2 + 1− a2

= 2(1− a).

Combining this with (Equation A.2), we obtain

∥H∥2F ≲
λ

σ1 − σ2

∥H∥F ,

from which the result follows.
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A.5 Proof of Poisson variance/moment bounds

If x satisfies Assumption 1 and, conditioned on x, y ∼ Poisson(⟨x, β∗⟩2), then

E ξ2⟨x, u⟩4 = E
[
E[ξ2 | x]⟨x, u⟩4

]
= E⟨x, β∗⟩2⟨x, u⟩4

≲ ∥β∗∥22.

Also,

∥ξ⟨x, u⟩2∥α =
(
E
∣∣ξ⟨x, u⟩2∣∣α)1/α

=
(
E
[
E[|ξ|α | x]|⟨x, u⟩|2α

])1/α
≲
√
α
(
E|⟨x, β∗⟩|α|⟨x, u⟩|2α

)1/α
+ α∥⟨x, u⟩2∥α

≲ α2(∥β∗∥2 + 1),

where the first inequality uses the standard (centered) Poisson moment bound

∥Z − EZ∥α ≲
√
αλ+ α

if Z ∼ Poisson(λ).
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APPENDIX B

MANIFOLD REGRESSION ANALYSIS

B.1 Proof of general RKHS results

We write PG and PG⊥ for the projections in L2 andH onto G and its orthogonal complement

G⊥, respectively.

For brevity, we denote by Pn the empirical measure given by the n independent samples

of the variables (X, ξ), i.e., Pnw = 1
n

∑n
i=1w(Xi, ξi). For example, if h : S → R is a

function, Pnh2 = 1
n

∑n
i=1 h

2(Xi), and Pnξh = 1
n

∑n
i=1 ξih(Xi).

We use the following lemmas in our proof of Theorem 7:

Lemma 22. Let δ ∈ (0, 1). If

n ≥ max{7, 3γ′}Kp log
max{2, 4γ}p

δ
,

then, with probability at least 1− δ,

Pnf
2 ≥ 1

2
∥f∥2L2

− 3
√

tp+1∥f∥L2∥f∥H

for all f ∈ H.

Lemma 23. There is a universal constant C such that, if

n

log2 n
≥ C(1 ∨ γ′)

Kp

p

∥ξ∥2ψ1

σ2
,
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then, with probability at least 1− δ,

|Pnξf | ≤
3

2
σ ·

(√
p+ 2

√
log 4/δ

√
n

∥f∥L2 +

√
trTG⊥ + 2

√
tp+1 log 4/δ√

n
∥f∥H

)

≤ 3

2
σ ·

(√
p+ 2

√
log 4/δ

√
n

)(
∥f∥L2 +

√
γtp+1∥f∥H

)
.

for all f ∈ H.

With these, we prove the main result:

Proof of Theorem 7. We write our objective function as

F (f) =
1

n

n∑
i=1

(Yi − f(Xi))
2 + α∥f∥2H.

f̂ satisfies∇F (f̂) = 0. Noting that

1

2
∇F (f) = − 1

n

n∑
i=1

(Yi − f(Xi))k(·, Xi) + αf,

we have

0 =
1

2
⟨∇F (f̂), f ∗ − f̂⟩H

= ⟨∗, αf̂ − 1

n

n∑
i=1

(Yi − f̂(Xi))k(·, Xi)⟩Hf ∗ − f̂

= α⟨f̂ , f ∗ − f̂⟩H −
1

n

n∑
i=1

(Yi − f̂(Xi))(f
∗(Xi)− f̂(Xi))

= α⟨f̂ , f ∗ − f̂⟩H +
1

n

n∑
i=1

[
(Yi − f ∗(Xi))(f̂(Xi)− f ∗(Xi))− (f̂(Xi)− f ∗(Xi))

2
]

= α⟨f̂ , f ∗ − f̂⟩H + Pnξ(f̂ − f ∗)− Pn(f̂ − f ∗)2.

(B.1)

Let E1 and E2 denote the events of Lemmas 22 and 23. For part 1 of the theorem, we

assume that E1 holds, which occurs with probability at least 1− δ. For part 2, we assume
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E1 ∩ E2 holds, which occurs with probability at least 1− 2δ. In what follows, we treat the

two cases the same (and assume α > 0), since we can simply take σ = 0 and the limit α ↓ 0

for part 1.

Let e2 = ∥f̂ − f ∗∥L2 and eH = ∥f̂ − f ∗∥H. On E1 ∩ E2, (Equation B.1) implies

1

2
e22 ≤ σ(ae2 + beH) + ce2eH + α⟨f̂ , f ∗ − f̂⟩H,

where a = 3
2

√
p+2
√

log 4/δ
√
n

, b =
√
γtp+1a, and c = 3

√
tp+1. First, note that

⟨f̂ , f ∗ − f̂⟩H = ⟨f ∗, f ∗ − f̂⟩H − e2H ≤ ∥f ∗∥HeH − e2H,

so

σbeH + α⟨f̂ , f ∗ − f̂⟩H ≤ (σb+ α∥f ∗∥H)eH − αe2H ≤
(σb+ α∥f ∗∥H)2

α
.

To control the error term ce2eH, we need a more explicit bound on eH. Because Pn(f̂ −

f ∗)2 ≥ 0, (Equation B.1) gives

e2H ≤ ∥f ∗∥HeH +
1

α
Pnξ(f̂ − f ∗) ≤ ∥f ∗∥HeH +

σ

α
(ae2 + beH).

Because x2 ≤ a+ bx implies x ≤
√
a+ b, we then have

eH ≤ ∥f ∗∥H +
σb

α
+

√
σae2
α

.

Putting everything together, we have

1

2
e22 ≤

(σb+ α∥f ∗∥H)2

α
+ σae2 + ce2

(
∥f ∗∥H +

σb

α
+

√
σae2
α

)
.
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x2 ≤ a+ bx+ cx3/2 implies x ≤
√
a+ b+ c2, so

e2 ≤
√
2
σb√
α
+
√
2α∥f ∗∥H + 2σa+ 2c∥f ∗∥H + 2

σcb

α
+ 4

c2σa

α

= (
√
2α + 2c)∥f ∗∥H + 2σ

(
a+

b√
2α

+
bc

α
+ 2

ac2

α

)
.

The result immediately follows by substituting our choices of a, b, and c and, if σ ̸= 0, using

the assumption that α ≥ 54tp+1.

B.1.1 Proofs of key lemmas

Lemma 22 follows quickly from the following two concentration results:

Lemma 24. If δ ∈ (0, 1), and n ≥ 7Kp log
p
δ
, then, with probability at least 1− δ, for all

f ∈ G,

Pnf
2 ≥ 1

2
∥f∥2L2

.

Proof. Note that for all f ∈ G,

Pnf
2 =

1

n

n∑
i=1

f 2(Xi)

=
1

n

n∑
i=1

⟨Z(Xi), f⟩2L2

= ⟨(Pn(Z ⊗L2 Z))f, f⟩L2 ,

where we define Z(X) =
∑p

ℓ=1 vℓ(X)vℓ ∈ G. The lemma will follow from a concentration

result on Pn(Z ⊗L2 Z). Note that the operator Z(X) ⊗L2 Z(X) ⪰ 0 for all X , and, by

Assumption 4, we have

∥Z(X)⊗L2 Z(X)∥L2 = ∥Z(X)∥2L2
=

p∑
ℓ=1

v2ℓ (X) ≤ Kp

almost surely. Also, EPn(Z ⊗L2 Z) = EZ(X) ⊗L2 Z(X) = IG. The matrix Chernoff
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bound [49, Theorem 5.1.1] implies that, for all ϵ ∈ [0, 1),

P(Pn(Z ⊗L2 Z) ⪰ (1− ϵ)IG) ≥ 1− p

(
e−ϵ

(1− ϵ)1−ϵ

)n/Kp

.

Choosing ϵ = 1/2 gives the result.

Lemma 25. If δ ∈ (0, 1), and n ≥ 3Rp

tp+1
log

2 trT
G⊥

tp+1δ
, then, with probability at least 1− δ, for

all f ∈ G⊥,

Pnf
2 ≤ 2tp+1∥f∥2H.

Proof. Similarly to the proof of Lemma 24, for all f ∈ G⊥,

Pnf
2 = ⟨(Pn(W ⊗H W ))f, f⟩H,

where W (X) =
∑

ℓ>p tℓvℓ(X)vℓ. Note that EW (X)⊗H W (X) = TG⊥ . By Assumption 4,

∥W (X)⊗H W (X)∥H = ∥W (X)∥2H =
∑
ℓ>p

tℓv
2
ℓ (X) ≤ Rp

almost surely. By [49, Theorem 7.2.1], if ϵ ≥ Rp/ntp+1, then

P(∥Pn(W ⊗H W )∥H ≤ (1 + ϵ)tp+1) ≥ 1− 2dp

(
eϵ

(1 + ϵ)1+ϵ

)ntp+1/Rp

,

where dp = trTG⊥/tp+1. Choosing ϵ = 1 gives the result.

Proof of Lemma 22. Applying Lemmas 24 and 25 (with δ/2 substituted for δ) and a union

bound, we have, with probability at least 1− δ,

√
Pnf 2 ≥

√
Pn(PGf)2 −

√
Pn(PG⊥f)2

≥ 1√
2
∥PGf∥L2 −

√
2tp+1∥PG⊥f∥H,
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so

Pnf
2 ≥ 1

2
∥PGf∥2L2

− 2
√

tp+1∥PGf∥L2∥PG⊥f∥H

≥ 1

2
∥f∥2L2

− 1

2
∥PG⊥f∥2L2

− 2
√

tp+1∥f∥L2∥f∥H

≥ 1

2
∥f∥2L2

− 3
√

tp+1∥f∥L2∥f∥H.

Proof of Lemma 23. Let BG
2 denote the L2-unit ball in G, and let BG⊥

H denote the H-unit

ball in G⊥. Note that for all f ∈ H, we have

f ∈ ∥f∥L2B
G
2 + ∥f∥HBG⊥

H ,

where the plus sign denotes Minkowski addition. Therefore, because |Pnξf | is sublinear in

f , it suffices to bound

Z1 := sup
f∈BG

2

|Pnξf |

and

Z2 := sup
f∈BG⊥

H

|Pnξf |.

We present a complete proof for the bound of Z1; the proof for Z2 is similar.
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First, note that

Z1 = sup
f∈BG

2

|Pnξf |

= sup∑p
ℓ=1 a

2
ℓ≤1

∣∣∣∣∣Pn
(
ξ

p∑
ℓ=1

aℓvℓ

)∣∣∣∣∣
= sup∑p

ℓ=1 a
2
ℓ≤1

∣∣∣∣∣
p∑
ℓ=1

aℓPn(ξvℓ)

∣∣∣∣∣
=

(
p∑
ℓ=1

P 2
n(ξvℓ)

)1/2

,

so

EZ1 ≤
√

EZ2
1 =

√√√√ p∑
ℓ=1

EP 2
n(ξvℓ) = σ

√
p

n
.

We also have

sup
f∈BG

2

n∑
i=1

E(ξif(xi))
2 = nσ2.

Finally, note that

sup
f∈BG

2

∥f∥∞ ≤
√
Kp,

so ∥∥∥∥∥max
i

sup
f∈BG

2

|ξif(xi)|

∥∥∥∥∥
ψ1

≤
√
Kp∥ξ∥ψ1 log n.

Let η ∈ (0, 1). [173, Theorem 4] (with, in the notation of that paper, δ = 1) implies that,

with probability at least 1− δ/2,

Z1 ≤ σ

(
(1 + η)

√
p

n
+ 2

√
log 4/δ

n

)
+

C ′
η

√
Kp∥ξ∥ψ1(log n)(log 12/δ)

n

for a constant C ′
η that only depends on η. By a similar argument, we have, with probability
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at least 1− δ/2,

Z2 ≤ σ

(
(1 + η)

√
trTG⊥

n
+ 2

√
tp+1 log 4/δ

n

)
+

C ′
η

√
Rp∥ξ∥ψ1(log n)(log 12/δ)

n
.

Fixing η ∈ (0, 1/2) and choosing a suitable constant C to ensure n is large enough completes

the proof.

B.2 Proof of heat kernel approximation

In this appendix, we prove upper and lower bounds on the heat kernel diagonal values.

Although we only use the upper bound in our paper, we include the lower bound also as

both may be of independent interest.

The concepts from differential geometry used in this section can be found in, for

example, [174, 175]. The key tools we will use in our analysis of how well the heat kernel is

approximated by a Gaussian RBF are the following comparison theorems:

Lemma 26 ([91, Theorem 4.5.1]). If the sectional curvature of an m-dimensional manifold

M is bounded above by K > 0, then, for all x, y ∈M, kh
t (x, y) ≤ kh,Kt (dM(x, y)), where

kh,Kt (r) is the (radially symmetric) heat kernel on the m-dimensional space of constant

curvature K, and, if K > 0, we set kh,Kt (r) = kh,Kt (π/
√
K) for r ≥ π/

√
K.

Lemma 27 ([91, Theorem 4.5.2]). If the Ricci curvature of M is bounded below by

(m− 1)K for some constant K, then, for all x, y ∈M, kh
t (x, y) ≥ kh,Kt (dM(x, y)), where

kh,Kt (r) is the heat kernel on the space of constant curvature K.

A lower bound of K on sectional curvature implies a lower bound of (m− 1)K on the

Ricci curvature tensor (see, e.g., the formula for Ric(v, v) in [175, p. 38]), so Lemma 27

also holds under the (stronger) assumption of a lower bound of K on sectional curvature.

The space of constant curvature K > 0 is the sphere SmK = Sm/
√
K, while the space

of constant curvature −K < 0 is the scaled hyperbolic space Hm
K = Hm/

√
K. To apply
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Lemmas 26 and 27, we need to find bounds for the heat kernel on the sphere and on

hyperbolic space.

We will use the following result:

Lemma 28 ([176, Theorem 1]). The heat kernel in hyperbolic space Hm has the radial

representation

kh,H
m

t (r) = e−
(m−1)2t

8

( r

sinh r

)m−1
2 e−r

2/2t

(2πt)m/2

× Er exp

(
−(m− 1)(m− 3)

8

∫ t

0

(
1

sinh2Rs

− 1

R2
s

)
ds

)
,

where Rs is an m-dimensional Bessel process, and Er denotes expectation conditioned on

Rt = r.

A nearly identical argument to that in [176] gives a corresponding result for the sphere

Sm for m ≥ 2:

Lemma 29. For all m ≥ 2, the heat kernel on the sphere Sm has the radial representation

kh,S
m

t (r) = e
(m−1)2t

8

( r

sin r

)m−1
2 e−r

2/2t

(2πt)m/2

× Er exp

(
−(m− 1)(m− 3)

8

∫ t

0

(
1

sin2Rs

− 1

R2
s

)
ds

)
,

where, again, Rs is an m-dimensional Bessel process, and Er denotes expectation condi-

tioned on Rt = r.

For m ≥ 3, the exponent in the integrands in the formula of Lemma 28 (resp. Lemma 29)

is always positive (resp. negative), so we have the following simple bounds on the heat

kernels on the standard spaces of constant curvature:

kh,H
m

t (r) ≥ e−
(m−1)2t

8

( r

sinh r

)m−1
2 e−r

2/2t

(2πt)m/2
, (B.2)
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and

kh,S
m

t (r) ≤ e
(m−1)2t

8

( r

sin r

)m−1
2 e−r

2/2t

(2πt)m/2
. (B.3)

It is easily verified that pS
m
K
t (r) = pS

m

Kt (
√
Kr), with a similar formula for scaled hyperbolic

space. We can summarize this in the following result:

Lemma 30. SupposeM is an m-dimensional complete Riemannian manifold for m ≥ 3.

1. Suppose M has Ricci curvature bounded below by −(m − 1)K1. Then, for all

x, y ∈M, denoting r = d(x, y),

kh
t (x, y) ≥ e−

(m−1)2

8
K1t

( √
K1r

sinh(
√
K1r)

)m−1
2 e−r

2/2t

(2πt)m/2
.

2. SupposeM has sectional curvature bounded above by K2. Then, for r < π/
√
K2,

and for all x, y ∈M such that d(x, y) ≥ r,

kh
t (x, y) ≤ e

(m−1)2

8
K2t

( √
K2r

sin(
√
K2r)

)m−1
2 e−r

2/2t

(2πt)m/2
.

We note that, for r = 0 and t small, these results are comparable to the well-known

asymptotic expansion for the heat kernel, which depends on the scalar curvature at x (see,

e.g., [90, Section VI.4]).

Finally, we specialize to the case r = 0 and simplify:

Proposition 1. Let ϵ ≤ 2/3.

1. Under the conditions of Lemma 30.1, for t ≤ 8ϵ
(m−1)2K1

and all x ∈M,

kh
t (x, x) ≥

1− ϵ

(2πt)m/2
.
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2. Under the conditions of Lemma 30.2, for t ≤ 6ϵ
(m−1)2K2

and all x ∈M,

kh
t (x, x) ≤

1 + ϵ

(2πt)m/2
.

Proof. From Lemma 30, we have

e−
(m−1)2

8
K1t ≤ (2πt)−m/2kh

t (x, x) ≤ e
(m−1)2

8
K2t.

The result follows from noting that e−s ≥ 1 − s for all s ≥ 0, and es ≤ 1 + 4
3
s for

0 ≤ s ≤ 1/2.

Lemma 9 is a case of this last result, taking K2 = κ.

B.3 Proof of non-asymptotic Weyl law estimates

Proof of Theorem 8. By Lemma 9, for all λ ≥ 0 and t ≤ 6ϵ
(m−1)2κ

,

e−λt/2Nx(λ) = e−λt/2
∑
λℓ≤λ

v2ℓ (x)

≤
∞∑
ℓ=0

e−λℓt/2v2ℓ (x)

= kh
t (x, x)

≤ 1 + ϵ

(2πt)m/2
.
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Taking t = m/λ, we get

Nx(λ) ≤
(1 + ϵ)eλt/2

(2πt)m/2

=
1 + ϵ

(4π)m/2
em/2

(m/2)m/2
λm/2

≤ 1 + ϵ

(4π)m/2
2
√
m

Γ
(
m
2
+ 1
)λm/2

=
2(1 + ϵ)

√
m

(2π)m
Vmλ

m/2,

where the second inequality uses Stirling’s approximation.

Proof of Lemma 10. For c ∈ (0, 1), note that

∑
λℓ≥λ

e−λℓt/2v2ℓ (x) ≤ e−(1−c)λt/2
∑
λℓ≥λ

e−cλℓt/2v2ℓ (x)

≤ e−(1−c)λt/2
∞∑
k=0

e−cλℓt/2v2ℓ (x)

= e−(1−c)λt/2pMct (x, x)

≤ e−λt/2(1 + ϵ)
ecλt/2

(2πct)m/2
.

Choosing c = m/λt, the remainder of the proof is identical to that of Theorem 8.

B.4 Proof of manifold regression results

Proof of Theorems 9 and 10. To apply the framework of Sections 4.2.1 and 4.4.1, which

assumes the set S has measure 1, we consider the normalized volume measure dṼ =

dV/ volM. With respect to Ṽ , kh
t has the eigenvalue decomposition

kh
t (x, y) =

1

volM
∑
ℓ

e−λℓt/2ũℓ(x)ũℓ(y),

where ũℓ =
√
volMuℓ. A similar normalized expansion holds for kbl

Ω .

139



Note that Theorem 8 and Lemma 10 only give us bounds on the contants Kp and Rp

in Assumption 4. For kbl
Ω , this holds with Kp = p(Ω) (taking ϵ = 1/2 in Theorem 8) and

Rp = 0. Assumption 5 holds trivially with γ = γ′ = 0.

For kh
t , we can again take Kp = p(Ω) (again taking ϵ = 1/2), and we get a bound on Rp

such that γ = γ′ = 1.

Finally, for both kernels, we take into account the fact that ∥·∥L2(M,Ṽ ) =
∥·∥L2(M,V )√

volM .

With these considerations in mind, the results follow from Theorem 7.
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APPENDIX C

INTERPOLATION ANALYSIS

C.1 Notation

For convenience in reading, we collect all notation that is used for the proofs in Table C.1.

In addition, we will use many different norms. For a function f : X → R, ∥f∥Lp
:=

Table C.1: Notation

Symbol(s) Definition(s) Description

kx kx = k(·, x) Kernel function centered at x
T T (f) =

∫
f(x)kx dµ(x) Integral operator of kernel k

{(λℓ, vℓ)}∞ℓ=1 T (f) =
∑∞

ℓ=1 λℓ⟨f, vℓ⟩L2vℓ, λ1 ≥ λ2 ≥ · · · Eigenvalue decomposition of T

A A(f) =

f(x1)
...

f(xn)

 Sampling operator fromH to Rn

A∗ A∗(z) =
∑n

i=1 zikxi
Adjoint ofAw.r.tH and ℓ2 inner prod-
ucts

G, G⊥ G = span{v1, . . . , vp}
Span of first p eigenfunctions of T
(and its complement)

I (IG) Identity operator (restricted to G)
TG, TG⊥ TG = T PG, TG⊥ = T PG⊥ T restricted to G and G⊥

AG,R AG = APG,R = APG⊥
Restrictions of sampling operator to
G, G⊥

C, C∗ C = AG, C∗ = T −1
G A∗

G

Sampling operator and its adjoint on
G w.r.t. L2 inner product on G

α Explicit regularization parameter

αL, αU αLIn ⪯ αIn +RR∗ ⪯ αUIn
Lower and upper bounds on ex-
plicit+implicit regularization

ᾱ, α̃ ᾱ = 2αUαL

αU+αL
, α̃ = αU+αL

2

Harmonic and arithmetic means of
αU , αL

B B = (IG +A∗
G(α +RR∗)−1AG)−1 Bias operator on G

S S = IG − B
Kernel regression operator (“sur-
vival”) on G

B B =
(
IG + n

ᾱ
TG
)−1 Idealized approximation to bias B

S S = IG − B = n
ᾱ
TG
(
IG + n

ᾱ
TG
)−1 Idealized approximation to survival S
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(
(Ex∼µ|f(x)|p)1/p

)
. For f ∈ H, ∥f∥H = ∥T −1/2f∥L2 is the RKHS norm. For u ∈ Rn,

∥u∥ℓ2 is the standard Euclidean norm. We denote the L2,H, and ℓ2 inner products by ⟨·, ·⟩L2 ,

⟨·, ·⟩H, and ⟨·, ·⟩ℓ2 , respectively.

∥·∥L2 , ∥·∥H, and ∥·∥ℓ2 also denote operator norms when applied to operators from the

corresponding Hilbert space to itself. We will write the operator norm of an operator

T : H1 → H2 (for any Hilbert spaces H1 and H2) with respect to the H1 and H2 norms as

∥T∥H1→H2 . Similarly, ∥T∥HS,H1→H2 refers to the Hilbert-Schmidt norm of T with respect

to the H1 and H2 inner products.

C.2 Proofs of deterministic-sample results

We begin with the proofs of the deterministic-sample results (Theorems 11 and 12).

In this section, we will often abbreviate scaled identity operators such as aIn, aI, aIG,

aIG⊥ by the number a. The meaning should be clear from context.

C.2.1 Bias

The main technical challenge for proving Theorem 11 is bounding the approximation error

between the “ideal” bias operator B =
(
IG + n

ᾱ
TG
)−1 (discussed in Section 5.2.4) and the

actual bias, which turns out to be B := (IG +A∗
G(α+RR∗)−1AG)−1 (derived in the proof

of Theorem 11 below). The following result quantifies this error.

Lemma 31. Under the conditions of Theorem 11,

∥B − B∥H→L2 ≤
c

1− c
∥B∥H→L2 ,

where c < 1 is an upper bound on the quantity αU−αL

αU+αL
+ 2

n
∥C∗C − nIG∥L2

(as defined

in Theorem 11).
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Proof. Recall that we have assumed

αU − αL
αU + αL

+
2

n
∥C∗C − nIG∥L2

≤ c < 1.

A standard perturbation argument (e.g., [196, p. 335]) gives

B − B =
∞∑
i=1

(−1)i
[
B
(
A∗
G(α +RR∗)−1AG −

n

ᾱ
TG
)]k
B

=

(
∞∑
i=1

(−1)i
[(
T −1
G +

n

ᾱ
IG
)−1(

C∗(α +RR∗)−1C − n

ᾱ
IG
)]k)

B

as long as the operator norm (in any space) of the bracketed operator

(
T −1
G +

n

ᾱ
IG
)−1(

C∗(α +RR∗)−1C − n

ᾱ
IG
)

is strictly less than 1.

We now show that this is the case. We have

∥∥∥C∗(α +RR∗)−1C − n

ᾱ
IG
∥∥∥
L2

≤
∥∥∥∥C∗((α +RR∗)−1 − 1

ᾱ

)
C
∥∥∥∥
L2

+
1

ᾱ
∥C∗C − nIG∥L2

≤ ∥C∥2L2→ℓ2
max

{∣∣∣∣ 1αL − 1

ᾱ

∣∣∣∣, ∣∣∣∣ 1αU − 1

ᾱ

∣∣∣∣}
+

1

ᾱ
∥C∗C − nIG∥L2

≤ αU − αL
2αUαL

(
n+ ∥C∗C − nIG∥L2

)
+

1

ᾱ
∥C∗C − nIG∥L2

,

where the first and third inequalities use the triangle inequality, and the second inequality

uses αL ⪯ α +RR∗ ⪯ αU . Then, since

∥∥∥∥(T −1
G +

n

ᾱ
IG
)−1
∥∥∥∥
L2

≤ ᾱ

n
,
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we have

∥∥∥∥(T −1
G +

n

ᾱ
IG
)−1(

C∗(α +RR∗)−1C − n

ᾱ
IG
)∥∥∥∥

L2

≤ αU − αL
αU + αL

+

(
1 +

αU − αL
αU + αL

)
· 1
n
∥C∗C − nIG∥L2

≤ αU − αL
αU + αL

+
2

n
∥C∗C − nIG∥L2

≤ c.

Since c < 1, the rest of the bound follows via the expression for the infinite sum of a

geometric series.

We are now ready to prove our main deterministic bias result (Theorem 11).

Proof of Theorem 11. Since f ∗ ∈ G, the full expression for the noiseless regression estimate

is

f̂0 =

A∗
G

R∗

 (α +AGA∗
G +RR∗)−1AGf ∗.

The pushthrough identity gives

(α +AGA∗
G +RR∗)−1AG = (α +RR∗)−1(In +AGA∗

G(α +RR∗)−1)−1AG

= (α +RR∗)−1AG(IG +A∗
G(α +RR∗)−1AG)−1.

This gives

PG(f̂0) = A∗
G(α +RR∗)−1AG(IG +A∗

G(α +RR∗)−1AG)−1f ∗

= (IG − (IG +A∗
G(α +RR∗)−1AG)−1)f ∗
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and

PG⊥(f̂0) = R∗(α +RR∗)−1AG(IG +A∗(α +RR∗)−1A∗)−1f ∗.

We denote the actual bias and survival operators on G as

B = (IG +A∗
G(α +RR∗)−1AG)−1, and

S = IG − B.

We then have

PG(f̂0) = Sf ∗,

and

PG⊥(f̂0) = R∗(α +RR∗)−1AGBf ∗.

Clearly, ∥f ∗−PG(f̂0)∥L2 = ∥Bf ∗∥L2 ≤ ∥B∥H→L2∥f ∗∥H. To bound ∥PG⊥(f̂0)∥L2 , note

that (recalling C = AG)

∥∥R∗(α +RR∗)−1AG
∥∥
L2
≤ ∥IG⊥∥H→L2 · ∥R∗(α +RR∗)−1∥ℓ2→H · ∥C∥L2→ℓ2 .

Note that ∥IG⊥∥H→L2 = ∥T
1/2

G⊥ ∥H =
√

λp+1, and

∥C∥2L2→ℓ2
= ∥C∗C∥L2 ≈ ∥nIG∥L2 = n.

Furthermore, note that the singular values (from ℓ2 toH) of the operatorR∗(α +RR∗)−1

are √
λk(RR∗)

α + λk(RR∗)
≤ 1√

α + λk(RR∗)
≤ 1
√
αL

, k = 1, . . . , n,
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where λk(S) denotes the kth eigenvalue of a symmetric matrix S. Therefore,

∥∥R∗(α +RR∗)−1AG
∥∥
L2

≲
√

λp+1 ·
1
√
αL
·
√
n =

√
nλp+1

αL
.

Noting that ᾱ ≤ 2αL, we have

∥f̂0 − f ∗∥L2 ≲

(
1 +

√
nλp+1

ᾱ

)
∥B∥H→L2∥f ∗∥H.

Lemma 31 gives

∥B∥H→L2 ≤ ∥B∥H→L2 + ∥B − B∥H→L2 ≤
1

1− c
∥B∥H→L2 .

Also, one can also easily check that ∥B∥H ≤ 1, and therefore ∥B∥H→L2 ≤
√
λ1. Thus

∥B∥H→L2 ≤ min

{√
λ1,

1

1− c
∥B∥H→L2

}

Using the fact that ∥B∥H→L2 ≲ min

{√
ᾱ
n
, ᾱ

n
√
λp

}
completes the proof.

With the proof of Theorem 11 complete, recall that we introduced a more refined

expression for the estimation error due to bias in Lemma 16 for the purpose of bounding

classification error. Note that the proof of Lemma 16 is a very simple modification of the

preceding proof. The error in G⊥ is bounded the same way. For the error in G, we bound

the norm of (S − S)f ∗ = (B − B)f ∗ instead of f ∗ − Sf ∗ = Bf ∗, and therefore we replace

∥B∥H→L2 by ∥B − B∥H→L2 in the bound.
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C.2.2 Variance

Recall that αL ⪯ α +RR∗ ⪯ αU and α̃ = αU+αL

2
. Also recall the formula

ϵ = A∗(α +AA∗)−1ξ.

To allow us to replace α +AA∗ with α̃ +AGA∗
G, we need the following result:

Lemma 32.

∥(α̃ +AGA∗
G)(α +AA∗)−1∥ℓ2 ≤

1

2

(
αU
αL

+ 1

)
.

Proof. Since (α+AA∗)− (α̃+AGA∗
G) = α+RR∗ − α̃, another perturbation expansion

(see Section C.2.1) gives

(α̃ +AGA∗
G)

−1 − (α +AA∗)−1 =
∞∑
k=1

(−1)k+1(α̃ +AGA∗
G)

−1
[
(α +RR∗ − α̃)(α̃ +AGA∗

G)
−1
]k
,

which is valid since αL ⪯ α +RR∗ ⪯ αU implies

∥∥(α +RR∗ − α̃)(α̃ +AGA∗
G)

−1
∥∥
ℓ2
≤ 1

α̃
· αU − αL

2
=

αU − αL
αU + αL

< 1.

Then

In − (α̃ +AGA∗
G)(α +AA∗)−1 =

∞∑
k=1

(−1)k+1
[
(α +RR∗ − α̃)(α̃ +AGA∗

G)
−1
]k
.

We apply the triangle inequality to get

∥(α̃ +AGA∗
G)(α +AA∗)−1∥ℓ2 ≤ ∥In∥ℓ2 +

∞∑
k=1

∥∥(α +RR∗ − α̃)(α̃ +AGA∗
G)

−1
∥∥k
ℓ2

≤ 1 +
∞∑
i=1

(
αU − αL
αU + αL

)i
=

1

2

(
αU
αL

+ 1

)
.
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We can now prove the main “variance” error bound:

Proof of Theorem 12. Since var(ξi) ≤ σ2 for each i, we have

Eξ∥ϵ∥2L2
≤ σ2∥A∗(α +AA∗)−1∥2HS,ℓ2→L2

= σ2∥A∗(α̃ +AGA∗
G)

−1(α̃ +AGA∗
G)(α +AA∗)−1∥2HS,ℓ2→L2

≤ σ2

4

(
αU
αL

+ 1

)2

∥A∗(α̃ +AGA∗
G)

−1∥2HS,ℓ2→L2
,

where the last inequality substitutes Lemma 32. Furthermore, we have

∥A∗(α̃ +AGA∗
G)

−1∥2HS,ℓ2→L2
= ∥A∗

G(α̃ +AGA∗
G)

−1∥2HS,ℓ2→L2
+ ∥R∗(α̃ +AGA∗

G)
−1∥2HS,ℓ2→L2

≤ ∥(α̃ +A∗
GAG)−1A∗

G∥2HS,ℓ2→L2
+

trL2(R∗R)
α̃2

= ∥(α̃T −1
G + C∗C)−1C∗∥2HS,ℓ2→L2

+
trL2(R∗R)

α̃2

≲
p

n
+

trL2(R∗R)
α̃2

,

where the last inequality is due to the fact that C is an n × p-dimensional operator, all of

whose singular values are close to
√
n.

Therefore,

Eξ∥ϵ∥2L2
≲ σ2

(
αU
αL

+ 1

)2(
p

n
+

trL2(R∗R)
α̃2

)
.

High-probability Noise Bounds

If the ξi’s are sub-Gaussian, we could use the Hanson-Wright inequality for sub-Gaussian

random vectors (see, e.g., [170]) to get a high-probability bound in Theorem 12,

Note that we can write

∥ϵ∥2L2
= ⟨Zξ, ξ⟩ℓ2 ,
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where

Z = (α +AA∗)−1AT A∗(α +AA∗)−1.

We have already calculated an upper bound on the expectation of this quadratic form. To

use the Hanson-Wright inequality to bound the upper tail, we need to bound both ∥Z∥ℓ2

and ∥Z∥HS (where ∥Z∥HS is the Hilbert-Schmidt norm with respect to the Euclidean inner

product, also known as the Frobenius norm). By a similar argument as before, we have

∥Z∥ℓ2 ≤
1

4

(
αU
αL

+ 1

)2

∥Z̃∥ℓ2 ,

and

∥Z∥HS ≤
1

4

(
αU
αL

+ 1

)2

∥Z̃∥HS,

where

Z̃ = (α̃ +AGA∗
G)

−1AT A∗(α̃ +AGA∗
G)

−1

= (α̃ +AGA∗
G)

−1AGTGA∗
G(α̃ +AGA∗

G)
−1︸ ︷︷ ︸

Z̃G

+(α̃ +AGA∗
G)

−1RTG⊥R∗(α̃ +AGA∗
G)

−1︸ ︷︷ ︸
Z̃
G⊥

.

Note that

Z̃G = AG(α̃ +A∗
GAG)−1TG(α̃ +A∗

GAG)−1A∗
G = C(α̃T −1

G + C∗C)−2C∗.

By a similar argument as before (in which we were effectively calculating the trace of Z̃G),

we have ∥Z̃G∥ℓ2 ≲ 1
n

and ∥Z̃G∥HS ≲
√
p

n
.

Similarly, ∥Z̃G⊥∥ℓ2 ≤ 1
α̃2∥RTG⊥R∗∥ℓ2 , and ∥Z̃G⊥∥HS ≤ 1

α̃2∥RTG⊥R∗∥HS.
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C.3 Proofs of operator concentration results

Proof of Lemma 11. Let diag(Z) denote the projection of Z onto the space of diagonal

matrices, and let diag⊥(Z) denote the orthogonal projection (i.e., onto the space of matrices

with zero diagonal). Note that

∥RR∗ − (tr TG⊥)In∥ ≤ ∥diag⊥(RR∗)∥+ ∥diag(RR∗)− (tr TG⊥)In∥

≤ ∥diag⊥(RR∗)∥HS +max
i
|kR(xi, xi)− tr TG⊥|

≤
√∑

i ̸=j

(kR(xi, xj))2 + ∥kR(·, ·)− tr TG⊥∥∞.

Squaring, taking an expectation, and noting that

E
x,y

i.i.d.∼µ
(kR(x, y))2 = tr(T 2

G⊥)

completes the proof.

Proof of Lemma 12. We have

trL2(R∗R) =
n∑
i=1

trL2(k
R
xi
⊗ kRxi)

=
n∑
i=1

∥kRxi∥
2
L2

=
n∑
i=1

∑
ℓ>p

λ2
ℓv

2
ℓ (xi).

Taking an expectation completes the proof.

Proof of Lemma 13. We can write the operator C∗C as a sum of independent random opera-
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tors:

C∗C =
n∑
i=1

z(xi)⊗ z(xi),

where

z(x) :=

p∑
ℓ=1

vℓ(x)vℓ.

Note that the BOS condition implies ∥z(x)∥2L2
≤ Cp almost surely in x. We also have

E z(x)⊗ z(x) = IG for x ∼ µ.

We use a matrix Bernstein inequality [49, Theorem 6.6.1] to analyze the zero-mean sum

C∗C − nIG =

p∑
i=1

(z(xi)⊗ z(xi)− E z(xi)⊗ z(xi)).

Writing Xi = z(xi)⊗ z(xi)− E z(xi)⊗ z(xi), we have ∥Xi∥L2 ≤ Cp almost surely, and

EX2
i ⪯ E(z(xi)⊗ z(xi))

2 = E∥z(xi)∥2L2
z(xi)⊗ z(xi) ⪯ CpE z(xi)⊗ z(xi) = CpIG.

The Bernstein inequality then gives that for any t > 0, with probability at least 1− e−t,

∥C∗C − nIG∥L2 =

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
L2

≲
√

Cpn(t+ log p) + Cp(t+ log p).

Proof of Lemma 14. For z ∈ Rn, we have

⟨RR∗z, z⟩ =
∑
ℓ>p

λℓ⟨wℓ, z⟩2.

By our assumptions, this is the sum of independent random variables.

If ∥z∥ℓ2 = 1, then, for each ℓ, ⟨wℓ, z⟩2 is sub-exponential (as the square of a sub-

Gaussian variable; since the sub-Gaussian norm is bounded, so is the sub-exponential norm),

E⟨wℓ, z⟩2 = 1, and E⟨wℓ, z⟩4 ≲ 1.
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Note that in this case, E⟨RR∗z, z⟩ = tr TG⊥ = ⟨(tr TG⊥)Inz, z⟩, and

E(⟨RR∗z, z⟩ − E⟨RR∗z, z⟩)2 =
∑
ℓ>p

λ2
ℓ E(⟨wℓ, z⟩2 − E⟨wℓ, z⟩2)2

≲
∑
ℓ>p

λ2
ℓ .

A Bernstein inequality then implies that for t > 0, with probability at least 1− e−t, we have

|⟨RR∗z, z⟩ − tr TG⊥| ≲

√√√√(∑
ℓ>p

λ2
ℓ

)
t+ λp+1t.

By a standard covering argument (e.g., [53, Exercise 4.4.3]), we then obtain, with probability

at least 1− e−t,

max
z∈Sn−1

|⟨RR∗z, z⟩ − tr TG⊥ | ≲

√√√√(∑
ℓ>p

λ2
ℓ

)
(n+ t) + λp+1(n+ t),

where Sn−1 is the unit sphere in Rn.

C.4 Tightness of general feature results

With no independence assumptions on the features {vℓ(x)}ℓ, our general results require

d ≳ n2 in order to upper and lower bound the residual Gram matrix RR∗ by constant

multiples of the identity. The following theorem shows that for Fourier features, d ≳ n2 is

in fact a necessary condition, i.e. if d = o(n2), then the condition number ofRR∗ grows as

n→∞.

Theorem 13. Consider the case of Fourier features with bi-level eigenvalues, i.e. vℓ ∈

L2([0, 1]) for ℓ = −d, . . . , d, which are defined by vℓ(x) = ej2πℓx for x ∈ [0, 1], and λℓ = 1

for |ℓ| ≤ p, λℓ = γ ∈ (0, 1) for p < |ℓ| ≤ d. Then, for any constant τ > 0, the residual
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Gram matrixRR∗ satisfies
λmax(RR∗)

λmin(RR∗)
≳

n4

τ 2d2

with probability at least 1− e−τ .

Intuitively, if there exist distinct indices i, i′ = 1, . . . , n such that xi and xi′ are very

close together, then the i-th and i′-th columns (and rows) ofRR∗ are nearly identical, and

thus,RR∗ is nearly rank-deficient. We now make this argument rigorous.

Proof. First, pick any two indices i, i′ ∈ {1, . . . , n} with i ̸= i′ and consider the 2 × 2

submatrix ofRR∗ formed by the i-th and i′-th rows and columns, i.e,

(RR∗)sub :=

kR(xi, xi) kR(xi, xi′)

kR(xi′ , xi) kR(xi′ , xi′)

 .

The kernel restricted to G⊥ is given by

kR(x, y) =
∑

p<|ℓ|≤d

λℓvℓ(x)vℓ(y)

=
∑

p<|ℓ|≤d

γej2πℓ(x−y)

= γ
sin[(2d+ 1)π(x− y)]− sin[(2p+ 1)π(x− y)]

sin[π(x− y)]
.

Hence, kR(xi, xi) = kR(xi′ , xi′) = 2(d− p)γ.
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Furthermore, using the inequality 2 cos θ ≥ 2− θ2 for θ ∈ R, we have

sin[(2d+ 1)πt]− sin[(2p+ 1)πt]

sin[πt]
=
∑

p<|ℓ|≤d

ej2πℓt

=
d∑

ℓ=p+1

2 cos(2πℓt)

≥
d∑

ℓ=p+1

[
2− (2πℓt)2

]
= 2(d− p)− 4π2

(
d∑

ℓ=p+1

ℓ2

)
t2

≥ 2(d− p)− 4π2d2(d− p)t2

for all t ∈ R, and thus,

kR(xi, xi′) = kR(xi′ , xi) = γ
sin[(2d+ 1)π(xi − xi′)]− sin[(2p+ 1)π(xi − xi′)]

sin[π(xi − xi′)]

≥ 2(d− p)γ − 4π2d2(d− p)γ(xi − xi′)
2.

We can then bound the smallest eigenvalue ofRR∗ by

λmin(RR∗) ≤ λmin((RR∗)sub) = kR(xi, xi)− kR(xi, xi′) ≤ 4π2d2(d− p)γ(xi − xi′)
2.

Then, by using the trivial bound λmax(RR∗) ≥ 1
n
tr(RR∗) = 1

n
· 2(d− p)γn = 2(d− p)γ,

we have
λmax(RR∗)

λmin(RR∗)
≥ 2(d− p)γ

4π2d2(d− p)γ(xi − xi′)2
=

1

2π2d2(xi − xi′)2
.

This bound holds for any distinct indices i ̸= i′. A relatively straightforward calculation1

1Thanks to Hans’s answer at https://mathoverflow.net/questions/1294
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shows that if x1, . . . , xn are i.i.d. Uniform[0, 1], then for any δ ∈ (0, 1
n−1

),

P {|xi − xi′| ≥ δ for all i ̸= i′} = n! P {xi−1 + δ ≤ xi for all i = 2, . . . , n}

= n!

∫
· · ·
∫
{0≤x1, xi−1+δ≤xi for i=2,...,n, xn≤1}

dx1 · · · dxn

= n!

∫
· · ·
∫
{yi≥0 for i=1,...,n, y1+···+yn≤1−(n−1)δ}

dy1 · · · dyn

= n! · 1
n!
(1− (n− 1)δ)n

= (1− (n− 1)δ)n

where we made the change of variable y1 = x1 and yi = xi− xi−1− δ for i = 2, . . . , n, and

we used the fact that the volume of the standard n-simplex is 1
n!

. Hence, if 0 < δ < 1
n−1

, the

probability that |xi − xi′| ≤ δ for some indices i ̸= i′ is 1− (1− (n− 1)δ)n.

If 0 < τ < n, we can apply this result for δ = τ
n(n−1)

, to obtain that with probability

1− (1− τ
n
)n ≥ 1− e−τ there exist i ̸= i′ such that |xi − xi′ | ≤ τ

n(n−1)
, and thus,

λmax(RR∗)

λmin(RR∗)
≥ 1

2π2d2(xi − xi′)2
≥ n2(n− 1)2

2π2d2τ 2
≳

n4

τ 2d2
.

If τ ≥ n, then it is guaranteed that there exist two indices i ̸= i′ which satisfy |xi − xi′ | ≤
1

n−1
≤ τ

n(n−1)
, and the same bound holds.

C.5 Proof of bi-level ensemble asymptotic results

If β > 2 and r < 1, the concentration results Lemmas 11 and 13 will hold as n becomes

large, since we will have n ≫ p log p and d − p ≈ nβ ≫ n2. We now apply Lemma 16

and Theorem 12 to the bi-level ensemble. Since we are in the interpolating regime, we

take α = 0; then, αL = λmin(RR∗) and αU = λmax(RR∗) are the smallest and largest

eigenvalues ofRR∗. As long as αL and αU are close together (which we will analyze next),
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we will have

α̃ ≈ ᾱ ≈
∑
ℓ>p

λℓ ≈ nβ · n−(β−r−q) = nr+q.

Furthermore, ∑
ℓ>p

λ2
ℓ ≈ nβn−2(β−q−r) = n2q+2r−β.

Applying these scalings to Theorem 12 gives us

Eξ∥ϵ∥2L2
≲ nr−1 +

n

n2(r+q)
n2q+2r−β = nr−1 + n1−β.

To bound the bias, note that combining the above calculations with Lemma 11 gives

αU − αL
αU + αL

≲
1

ᾱ

√
n2
∑
ℓ>p

λ2
ℓ

≈ 1

nr+q

√
n2n2q+2r−β

= n1−β/2.

Combining this with Lemma 13, the quantity c in Theorem 11 and Lemma 16 can be

bounded as

c ≲ n1−β/2 + n(r−1)/2
√

log n.

Then Lemma 16 gives

∥η̂0 − Sη∗∥L2

∥η∗∥H

≲

(
n1−β/2 + n(r−1)/2

√
log n+

√
n−(β−r−q)n

nr+q

)
·min

{
1, nr+q−1, n(r+q−1)/2

}
≲
(
n1−β/2 + n(r−1)/2

√
log n

)
·min{1, nr+q−1}.

Recall from (Equation 5.3) that excess classification risk has upper bound E ≤ ∥η̂r∥L2

s

for any decomposition η̂0 = sη∗ + η̂r with an s > 0 that we can choose. We will now
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characterize the terms s and ∥η̂r∥L2 , beginning with the factor s. The ideal survival operator

is given by

S = IG −
(
IG +

n

ᾱ
TG
)−1

=
1

1 + ᾱn
IG ≈

1

1 + nr+q−1
IG.

Then, we can decompose

η̂ = Sη∗ + η̂r ≈
1

1 + nr+q−1
η∗ + η̂r,

where η̂r = ϵ+ η̂0 − Sη∗. This gives us s ≈ 1
1+nr+q−1 .

Next, we bound ∥η̂r∥L2 . We have

∥η̂r∥L2 ≲ n(r−1)/2 + n(1−β)/2 +
(
n1−β/2 + n(r−1)/2

√
log n

)
·min{1, nr+q−1}∥η∗∥L2 .

Above, we used the fact that ∥η∗∥L2 = ∥η∗∥H.

There are several cases to consider (recall that we are already assuming β > 2 and

r < 1):

1. q < 1 − r: In this case, s ≈ 1
1+nr+q−1 → 1, and ∥η̂r∥L2 → 0. Thus both the excess

regression and classification risk converge to 0 as n→∞.

2. If q > 1− r, we have s→ 0 and ∥η̂r∥L2 → 0, so ∥η̂∥L2 → 0. Therefore will will not

get regression consistency (for nonzero η∗).

3. If 1 − r < q < 3
2
(1 − r) and β > 2r + 2q, then s → 0, but ∥η̂r∥L2

s
≈ ∥η̂r∥L2 · (1 +

nr+q−1) → 0, so the excess classification risk converges to zero as n → ∞ even

though the regression risk does not.

4. If 1 − r < q < 3
2
(1 − r) but β < 2r + 2q or if q > 3

2
(1 − r), our analysis does not

yield any convergence results. It is an interesting and important direction for future
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work to characterize precisely what relations between the parameters q, r, β are both

sufficient and necessary for classification risk to go to 0 as n→∞.

C.6 Distortion analysis

In this section, we analyze more carefully the regularization-induced distortion. In particular,

we consider how different the (deterministic) ideal survival operator S is from a multiple of

the identity. Recall that

S = IG −
(
IG +

n

ᾱ
TG
)−1

=
n

ᾱ
TG
(
IG +

n

ᾱ
TG
)−1

.

We want to solve

arg min
s>0

∥∥sIG − S∥∥H→L2
= arg min

s>0

∥∥∥sT 1/2
G − T 1/2

G S
∥∥∥
L2

= arg min
s>0

max
1≤ℓ≤p

√
λℓ

∣∣∣∣s− λℓ
λℓ +

ᾱ
n

∣∣∣∣.
We abbreviate b := ᾱ

n
. The objective function in s is convex as the maximum of convex

functions. Some convex analysis tell us that there must be (at least) two distinct i, j ∈

{1, . . . , p} such that, for s at its optimal value s∗, both i and j achieve the maximum over

ℓ, and the arguments to the absolute value have different signs. Assuming, without loss of

generality, that λj > λi, this implies

arg min
s>0

max
1≤ℓ≤p

√
λℓ

∣∣∣∣s− λℓ
λℓ +

ᾱ
n

∣∣∣∣ =√λi

(
s∗ − λi

λi + b

)
=
√

λj

(
λj

λj + b
− s∗

)
.

Note that the last expression is increasing in λj , so we can take j = 1. Solving for s∗ gives

s∗ =
λiλ1 + b(λi + λ1 −

√
λiλ1)

(b+ λi)(b+ λ1)
.
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Plugging this into the objective function gives

∥s∗IG − S∥H→L2 = max
i

b
√
λiλ1(

√
λ1 −

√
λi)

(b+ λ1)(b+ λi)
.

One can check that if λp ≥ λ1(
1+

√
1+

λ1
b

)2 , this minimum is achieved for i = p. Otherwise,

we can find an upper bound by optimizing over continuous λ:

max
i

b
√
λiλ1(

√
λ1 −

√
λi)

(b+ λ1)(b+ λi)
≤ max

λ≥0

b
√
λλ1(
√
λ1 −

√
λ)

(b+ λ1)(b+ λ)

=
bλ

3/2
1

2(b+ λ1)(b+
√

b(b+ λ1))
,

where the minimum is achieved at λ = λ1(
1+

√
1+

λ1
b

)2 .

Whatever value of λ we use, we then have, for the corresponding choice of s,

∥sIG − S∥H→L2

s
=

b
√
λ1λ(
√
λ1 −

√
λ)

λ1λ+ b(λ1 + λ−
√
λ1λ)

.

For λ = λ1(
1+

√
1+

λ1
b

)2 , we get

∥sIG − S∥H→L2

s
≤

√
bλ1(b+ λ1)

2b+ 2λ1 +
√
b(b+ λ1)

.

If ᾱ
n
= b ≳ λ1, then this last bound is approximately

√
λ1 ≈ ∥IG∥H→L2 , so there appears to

be little hope of getting small classification error from this bound.

Alternatively, if ᾱ
n
≪ λ1, we get

∥sIG − S∥H→L2

s
≲

√
ᾱ

n
.

However, recall that the regression error is of the same order, so this analysis does not

significantly improve our classification risk.
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Therefore, the only regime in which we gain anything over the regression analysis is

when λp >
λ1(

1+
√

1+
λ1
b

)2 .

If b ≳ λ1, then this constraint implies that λp/λ1 is not very small. Furthermore,

∥s∗IG − S∥H→L2

s∗
≈
√

λp
λ1

(
√
λ1 −

√
λp).

Since λp is not too small, this ratio is only small when λ1 and λp are very close together.

If b ≲ λ1, the constraint implies λp ≳ b. Then

∥s∗IG − S∥H→L2

s∗
≈ b√

λ1λp
(
√
λ1 −

√
λp).

This is better than the previous case when b is small, and it improves over the regression

error bound when λ1 and λp are close. However, note that in this case we get c ≳ 1, so

unless λp is very close to λ1, there is no significant improvement over regression error.
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Montréal, Canada, Dec. 2015.
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