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1. Why Lower Bounds?

Consider a probabilistic model

X ∼ Pθ

where X takes values in some set S, and θ is some unknown parameter in
a set Θ of possible parameter values (we use parametric notation for its
familiarity and simplicity, but much of the material in these notes applies to
more general models as well). We try to come up with an estimator of θ,
which is a function θ̂(X) that we hope is close to the true parameter θ.

Many results in statistics literature yield an upper bound on error: given
some nonnegative error function w on Θ × Θ, we try to show that, given
that θ is the true parameter in our model, the quantity w(θ̂(X), θ) can be
bounded from above with high probability and/or in expectation.

The upper bounds on error which we can derive depend, in general, on the
parametric distribution (i.e., what is the form of Pθ) and on the set Θ of
valid parameters under consideration.

An upper bound tells us that the error cannot be too large: when applying
statistics to the real world, this is the most interesting kind of result, since
it gives us some assurance that our results are approximately correct.

However, merely knowing that our estimation procedure does not perform too
badly does not tell us whether or not it is possible to do better. It is therefore
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of great interest (both to the theory of statistics and to the development of
practical algorithms) to find lower bounds on error. If we can find a lower
bound of error in a model that (approximately) matches an upper bound
for an estimator that we or somebody else has developed, we have proved
that we cannot come up with a more accurate estimation procedure. On the
other hand, a failure to find matching bounds suggests that we have more
work to do, either in coming up with better estimators or in improving our
theoretical bounds!

2. Review of Bayesian Estimation and Bayes Risk

The simplest situation for finding lower bounds is Bayesian statistics. Here,
we assume that the parameter of interest is itself random, and we can exactly
calculate the expected error of the optimal estimator.

Suppose we have a probability distribution Π on our parameter space Θ; we
call this the “prior” distribution of θ. We must now write our original model
as a factored model with conditional distributions: θ has density π(θ),1 and,
conditioned on θ, X has density p(x | θ) = pθ(x). The risk of an estimator
for a given parameter θ is defined as

R(θ̂, θ) = E[w(θ̂(X), θ) | θ]

and the average risk with respect to Π is

RΠ(θ̂) = EΠR(θ̂, θ)

=

∫
Θ

π(θ)

∫
S

w(θ̂(x), θ)p(x | θ) dx dθ

The Bayes risk (the minimum possible average risk of the model) is defined
as RΠ = inf θ̂ RΠ(θ̂).

We define the standard “posterior” conditional density by Bayes’ formula:

q(θ | x) = p(x | θ)π(θ)∫
Θ
p(x | θ)π(θ) dθ

=
p(x | θ)π(θ)

r(x)

where r is the marginal density of x.
1All densities are with respect to some appropriate measure. We will abuse notation
somewhat by writing, for example,

∫
f(x) dx instead of

∫
f(x) µ(dx).
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By reversing the order of integration and applying Bayes’ formula to the
expression for the average risk, we can calculate

RΠ(θ̂) =

∫
S

r(x)

∫
Θ

w(θ̂, θ)q(θ | x) dθ dx

Then, the optimal (“Bayes”) estimator θ̂B is given by2

θ̂B(x) = argmin
θ′∈Θ

∫
Θ

w(θ′, θ)q(θ | x) dθ

and then RΠ = RΠ(θ̂B).

3. Minimax Risk

Although the Bayes risk derived in the previous section has an elegant expres-
sion, it is not always quite what we want. There is not usually any particular
reason to think that any problem we find out in the woods is “average” in
any sense; we are often more interested in the worst-case performance, which
can be extremely different from an averaged risk. This motivates another
definition of error, which is minimax risk:

R = inf
θ̂
sup
θ∈Θ

R(θ̂, θ)

In words, R is the smallest quantity such that no estimator has better (av-
erage) error than R for all possible parameter values.

3.1. Relation to Bayes Risk

Given that we are (at least at present) more interested in the minimax risk,
why did we bother talking about Bayes risk? The reason is the following
simple yet wonderful fact:

R ≥ sup
Π

RΠ (1)

Clearly, an average risk cannot be greater than a maximal risk. In fact,
equality holds in many interesting situations (see Example 1 below), but,
since we are primarily interested in lower bounds on minimax risk, we will
not explore this here.
2Although the expression for θ̂B is somewhat intimidating at first glance, it often has a
simple formula; for example, if w is the squared Euclidean norm, θ̂B(x) is simply the
posterior mean of the conditional distribution q(θ | x).
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Example 1. For a very simple situation where (1) is useful (and optimal),
suppose X ∼ N (θ, σ2Id) for θ ∈ Rd. What is the minimax risk for squared
Euclidean error? We can get an easy upper bound on the minimax risk by
taking θ̂(X) = X, in which case we can easily compute the average error to
be R(θ̂, θ) = Eθ‖X − θ‖2 = dσ2 for all θ ∈ Θ.

Now, consider a prior distribution θ ∼ N (0, τ 2Id). It is easily calculated that

θ | X ∼ N

(
1

1 + σ2

τ2

X,
σ2

1 + σ2

τ2

Id

)

so the Bayes estimator (which as noted before, is the posterior mean for this
error function) is θ̂B(X) = 1

1+σ2

τ2

X, which has risk dσ2

1+σ2

τ2

for every X (so the

average risk is the same).

Thus we see that R ≥ dσ2

1+σ2

τ2

; this holds for every τ > 0, so we can take τ → ∞

to get that R ≥ dσ2.

There are other interesting (and much less trivial examples) where one can
construct a prior (or sequence of priors) to get a bound on minimax risk. For
example, Donoho and Johnstone (1994) computed asymptotic error rates for
Gaussian means in `p balls with such a method. We will see another method
for computing the rate in the case of p = 1 later.

4. Packing, Hypothesis Testing, and Fano’s Method

In this section, we assume that Θ is a metric space, and our error function
is the metric, which we denote d.

4.1. A Reduction to Multiple Hypothesis Testing

Suppose we have a finite collection of points A ⊂ Θ (of size N) such that for
some δ > 0, and for every distinct θ, θ′ ∈ A, we have d(θ, θ′) ≥ 2δ. We call
A a 2δ-packing set of Θ. We know that any θ ∈ Θ can be within distance δ
of at most one θi ∈ A.

We can now find a lower bound on the risk of the estimation problem by
finding a lower bound on the probability of error for the multiple-hypothesis
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testing problem on ΘN . Indeed, if θ̂ is any estimator, let φθ̂ : S → A be the
test defined by

φθ̂(X) = argmin
θ∈A

d(θ, θ̂(X))

Then, for any θ ∈ A,

Pθ(d(θ, θ̂) ≥ δ) ≥ Pθ(φθ̂(X) 6= θ)

≥ inf
φ
Pθ(φ(X) 6= θ)

where the last infimum is over all tests φ : S → A. If we can find a minimax
lower bound on the probability of testing error (say, infφ supθ∈A Pθ(φ(X) 6=
θ) ≥ ε), then we have shown that R ≥ δε.3

4.2. An Information-Theoretic Lower Bound for Testing Risk

It remains to find a minimax lower bound on the probability of testing error

R′ = inf
φ
sup
θ∈A

Pθ(φ(X) 6= θ)

We note that this is another kind of minimax risk: our parameter space is
the finite set A, and the error function is w(θ, θ′) = 1{θ 6=θ′}. We will therefore
lower bound this risk by lower bounding the Bayes risk of a particular prior
over A.

Specifically, we will chose the uniform prior on A: π(θ) = 1/N . Note that for
any test φ, θ → X → φ(X) forms a Markov chain. Fano’s inequality from
information theory (Cover & Thomas, 2006) states that

P(φ(X) 6= θ) ≥ H(θ | X)− log 2

logN

where H(θ | X) is the conditional entropy of θ given X. Noting the identity
H(θ | X) = H(θ)−I(X; θ), where I(X; θ) is the mutual information between
X and θ, and H(θ) = log|A| is the entropy of θ, we have

P(φ(X) 6= θ) ≥ 1− I(X; θ) + log 2

logN

3We can usually choose A such that ε ≥ 1/2. Note that this method proves something a
bit stronger than a lower bound on average error (which could be the mean of a heavy-
tailed error distribution): we show that for certain θ ∈ Θ, the estimator will make a large
error with non-negligible probability.
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If we can choose A such that I(X; θ) is much smaller than logN , we will
have our desired lower bound on testing error. We will next show a couple
of simple ways to bound the mutual information I(X; θ); we will later see
an example of how to find a large packing set A.

4.3. Upper Bounds on Mutual Information

We can calculate the mutual information between the parameter θ and the
observed random variable X by first noting that X has marginal density

g(x) =
∑
θ∈A

π(θ)p(x | θ) = 1

N

∑
θ∈A

pθ(x)

The mutual information is then

I(X; θ) =
∑
θ∈A

∫
S

p(x | θ)π(θ) log p(x | θ)π(θ)
g(x)π(θ)

dx

=
1

N

∑
θ∈A

∫
S

pθ(x) log
pθ(x)

g(x)
dx

=
1

N

∑
θ∈A

DKL(Pθ ‖G)

where G is the distribution with density g.

Even if one has a convenient expression for the Kullback-Leibler divergence
between members of the model, it is rare to have a tractable formula for
DKL(Pθ ‖G). Therefore, we will try find some tractable upper bounds.
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One simple bound is the following: for any distribution Q with density q,

I(X; θ) =
1

N

∑
θ∈A

DKL(Pθ ‖G)

=
1

N

∑
θ∈A

∫
S

pθ log
pθ
g

=
1

N

∑
θ∈A

∫
S

(
pθ log

pθ
q
− pθ log

g

q

)

=
1

N

∑
θ∈A

DKL(Pθ ‖Q)−
∫
S

(
1

N

∑
θ∈A

pθ

)
log

g

q

=
1

N

∑
θ∈A

DKL(Pθ ‖Q)−DKL(G ‖Q)

≤ 1

N

∑
θ∈A

DKL(Pθ ‖Q)

≤ max
θ∈A

DKL(Pθ ‖Q)

In other words, replacing G in the mutual information expression with an
arbitrary (possibly more convenient, computationally) distribution gives us
an upper bound on the mutual information. If we don’t want to compute an
average KL divergence over all of the distributions Pθ, we can upper bound
by the largest divergence.

A weaker but commonly-used bound chooses Q to be one of the distributions
Pθ, θ ∈ A to get:4

I(X; θ) ≤ max
θ,θ′∈A

DKL(Pθ ‖ Pθ′)

In the case of Gaussian distributions, this weakening often does not hurt us
too much. However, in situations (e.g., Poisson distributions) where the
Pθ’s can be singular with respect to one another, being able to choose a
distribution Q such that no Pθ is singular with respect to Q is very valuable.
4This is often derived in much more direct fashion by noting that KL divergence is
jointly convex in its arguments, so DKL(Pθ ‖G) ≤ 1

N

∑
θ′∈A DKL(Pθ ‖Pθ′), and therefore

I(X; θ) ≤ 1
N2

∑
θ,θ′∈A DKL(Pθ ‖ Pθ′).
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4.4. Example: Gaussian Mean in `1 Ball

We consider again the Gaussian shift model X ∼ N (θ, σ2Id), but this time
we constrain the mean θ to be in an `1 ball in Rd, i.e.

Θ = {θ ∈ Rd | ‖θ‖1 ≤ r}

for some r > 0. Consider the maximum likelihood estimator

θ̂(X) = argmin
θ∈Θ

‖X − θ‖22

If the true parameter is θ0 ∈ Θ, we clearly must have ‖X − θ̂‖22 ≤ ‖X − θ0‖22.
With some algebra, we obtain that

‖θ̂ − θ0‖22 ≤ 2〈X − θ0, θ̂ − θ0〉
≤ 2 sup

θ∈Θ
〈X − θ0, θ − θ0〉

≤ 2 sup
θ∈Θ

‖X − θ0‖∞‖θ − θ0‖1

≤ 4r‖X − θ0‖∞

If Z = X − θ0, we know, from standard Gaussian tail bounds and the union
bound, that

P(‖Z‖∞ > t) ≤ 2de−t2/2σ2

so

E‖Z‖∞ =

∫ ∞

0

P(‖Z‖∞ > t) dt

= σ

∫ ∞

0

P(‖Z‖∞ > σt) dt

≤ σ

(√
2 log 2d+

∫ ∞

√
2 log 2d

2de−t2/2 dt

)
≤ σ

(√
2 log 2d+ 2d

∫ ∞

√
2 log 2d

t√
2 log 2d

e−t2/2 dt

)
= σ

(√
2 log 2d+ 2d

1

2d
√
2 log 2d

)
≤ 2σ

√
2 log 2d
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Therefore
Eθ0‖θ̂ − θ0‖22 ≤ 8

√
2σr
√
log 2d

We want to show that, within a constant, this error bound is optimal (at
least, for certain values5 of R, σ, and d). In particular, we will show that
it is optimal when R ≈ σ

√
log d, i.e., c1σ

√
log d ≤ r ≤ c2σ

√
log d for some

c2 ≥ c1 > 0.

To apply Fano’s method to this problem, we first find a bound on the mutual
information: taking Q = N (0, σ2Id), we have

sup
θ∈Θ

DKL(Pθ ‖Q) ≤ r2

2σ2

To get an error probability of at least 1/2, we therefore want to find ε such
that there is an 2ε-packing of Θ if size at least 2k+1, where k is an integer such
that k ≥ r2

2σ2 + log 2. It is shown in (Kühn, 2001) that there is a universal
constant c such that6

2ε ≥ cr

√
log d

k+2
+ 1

k + 2

≥ cr

√
log d

r2/2σ2 + 2 + log 2

≥
√
2cσ
√
log d

Then, Fano’s method gives us an expected minimax risk of at least

R = sup
θ∈Θ

inf
θ̂
Eθ‖θ − θ̂‖22

≥ 1√
2
cσ2 log d

≥ 1√
2

c

c2
rσ
√

log d

5For example, if σ
√
log d � r, we could get a better error bound of r2 by simply taking

θ̂ = 0.
6The result in (Kühn, 2001) requires log d ≤ k+2 ≤ d, which holds for the values of R, σ,
and d that are of interest to us. Furthermore, the result is for covering numbers, but it
is easily shown that the packing number for distance 2ε is at least the covering number
for distance ε, so this distinction comes out in the constant.
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Note that the rate (and, to some extent, the constraints on R, σ, and d)
match the (asymptotic) results found by Donoho and Johnstone (1994).

4.5. Literature on Fano’s Method

Most of the material on Fano’s method (as well as historical references) can
be found in the following sources.

Good overviews of Fano’s method (as well as Assouad’s method, which is
another class of minimax risk bounding methods that uses binary hypothesis
testing—an interesting topic for another day) is found in (Huber, 1997; Yu,
1997).

Many similar methods as those presented here, as well as the application of
Fano’s method to finding minimax rates for density estimation, can be found
in (Yang & Barron, 1999).

Gushchin (2003), inspired by Birgé (2005, 4), develops some very interesting
extensions to Fano’s method in which one can replace Kullback-Leibler di-
vergences by arbitrary f -divergences. I am still investigating the usefulness
of these more general approaches. This source also contains another nice
summary of the state-of-the-art bounds that can be attained from Fano’s
method.

References

Birgé, L. (2005). A new lower bound for multiple hypothesis testing. IEEE
Transactions on Information Theory, 51, 1611–1615.

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New
York, NY, USA: Wiley-Interscience.

Donoho, D. L., & Johnstone, I. M. (1994). Minimax risk over `p-balls for `p-
error. Probability Theory and Related Fields, 99(2), 277–303.

Gushchin, A. A. (2003). On Fano’s lemma and similar inequalities for the
minimax risk. Theory of Probability and Mathematical Statistics, 67,
29–41.

Huber, C. (1997). Lower bounds for function estimation. In Festschrift for
Lucien Le Cam (Chap. 15, pp. 245–258). Springer.

Kühn, T. (2001). A lower estimate for entropy numbers. J. Approx. Theory,
110(1), 120–124.

10



Lower Bounds on Estimation Error Andrew D. McRae

Yang, Y., & Barron, A. (1999). Information-theoretic determination of min-
imax rates of convergence. Ann. Stat., 27, 1564–1599.

Yu, B. (1997). Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam
(Chap. 29, pp. 423–435). Springer.

11


