
Reproducing Kernel Hilbert Spaces Andrew D. McRae

1. Kernel function basics

Kernels methods are a useful family of techniques for regression, interpola-
tion, and classification. Given a “data” space 𝑋 (which we will always take,
in these notes, to be R𝑑 or a subset thereof), we will consider (real1)“kernels”
to be functions 𝑘∶ 𝑋 × 𝑋 → R with the follow properties:

• Symmetry: 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥).

• Positive definiteness: for all 𝑥1, … 𝑥𝑁 ∈ 𝑋, the Gram matrix 𝐾 given
by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is positive semidefinite (which we write 𝐾 ⪰ 0),
and if the 𝑥𝑖’s are distinct, 𝐾 is (strictly) positive definite (which we
write 𝐾 ≻ 0).

A famous result of kernel theory is that a kernel 𝑘 is positive definite if and
only if it can be expressed in the following form:

𝑘(𝑥, 𝑦) = ⟨Φ(𝑥), Φ(𝑦)⟩,

where Φ∶ 𝑋 → ℋ is a map from 𝑋 into some Hilbert space ℋ. However, if
we are only given the function 𝑘, finding such a Hilbert space map Φ is often
difficult.

Many of the kernels we use in practice (on R𝑑) are stationary: i.e., 𝑘(𝑥, 𝑦) =
𝜙(𝑥 − 𝑦), where 𝜙∶ R𝑑 → R is a function. A single-variable function such
that a kernel constructed from it is positive definite is called a positive definite
function. The following famous theorem characterizes all positive definite
funcitons on R𝑑:

Theorem 1.1 (Bochner’s theorem [1, Theorem 6.6]). A function 𝜙∶ R𝑑 → R
is positive definite if and only if it is the Fourier transform of a nonnegative
and nonzero Radon measure on R𝑑.

A comprehensive treatment of what kinds of functions are “positive definite”
on more general spaces is the book by Berg, Christensen, and Ressel [2].

Most of the stationary kernels we use in practice have an even more specific
form: radial basis functions (RBFs) are kernels of the form 𝑘(𝑥, 𝑦) = 𝜙(‖𝑥 −
1The complex-valued case is also very useful, but for simplicity we skip it; the biggest
difficulty is keeping track of complex conjugates and the ordering of the arguments of 𝑘.
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𝑦‖), where ‖⋅‖ is the Euclidean (ℓ2) norm on R𝑑. Bochner’s theorem also
has versions for radial functions (again, see [1, Chapter 6]). A function
𝜙∶ [0, ∞) → R which gives rise to a positive definite kernel on R𝑑 is also
called positive definite. In general, this will depend on the dimension 𝑑.
However, certain functions form positive definite radial basis functions for all
dimensions: these are called completely monotone functions. See [1, Chapter
7] for a characterization.

Examples of kernels from completely monotone functions (which are probably
the most common used in practice) are the squared-exponential RBF

𝑘(𝑥, 𝑦) = 𝑒−‖𝑥−𝑦‖2/2ℓ2

and the Matérn kernels

𝑘(𝑥, 𝑦) = 21−𝜈

Γ(𝜈)
(

√
2𝜈‖𝑥 − 𝑦‖

ℓ
)

𝜈

𝐾𝜈 (
√

2𝜈‖𝑥 − 𝑦‖
ℓ

) ,

where 𝜈, ℓ > 0, and 𝐾𝜈 denotes the modified Bessel function of the second
kind of order 𝜈 (notation is from [3]). 𝜈 represents the smoothness of the
kernel; it is a fact that as 𝜈 → ∞, the Matérn function converges to a
squared-exponential function.

2. The RKHS

Given a kernel 𝑘, we can define its reproducing kernel Hilbert space (RKHS).
We define a set of functions on 𝑋

ℋ0 = {
𝑁

∑
𝑖=1

𝑎𝑖𝑘(⋅, 𝑥𝑖) ∶ 𝑎1, … , 𝑎𝑁 ∈ R, 𝑥1, … , 𝑥𝑁 ∈ 𝑋} ,

with an inner product

⟨
𝑀

∑
𝑖=1

𝑎𝑖𝑘(⋅, 𝑥𝑖),
𝑁

∑
𝑗=1

𝑏𝑗𝑘(⋅, 𝑦𝑗)⟩ =
𝑀

∑
𝑖=1

𝑁
∑
𝑖=1

𝑎𝑖𝑏𝑗𝑘(𝑥𝑖, 𝑥𝑗).

The fact that 𝑘 is positive definite implies that this is a true inner product,
so ℋ0 is an inner product space. We then take our RKHS ℋ to be the
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topological completion of ℋ0 with respect to the norm induced by the inner
product.2

Note that if 𝑓 = ∑ 𝑎𝑖𝑘(⋅, 𝑥𝑖), then

𝑓(𝑥) = ∑ 𝑎𝑖𝑘(𝑥, 𝑥𝑖) = ∑ 𝑎𝑖⟨𝑘(⋅, 𝑥), 𝑘(⋅, 𝑥𝑖) = ⟨𝑓, 𝑘(⋅𝑥)⟩.

In other words, taking an inner product with a kernel function centered at
𝑥 produces the value of a function at 𝑥. This phenomenon is what gives us
the term “reproducing kernel.”

A useful property of the RKHS is the the evaluation functional 𝑓 ↦ 𝑓(𝑥) is
bounded:

|𝑓(𝑥)| = |⟨𝑓, 𝑘(⋅, 𝑥)⟩| ≤ ‖𝑓‖‖𝑘(⋅, 𝑥)‖ = ‖𝑓‖√𝑘(𝑥, 𝑥).

Of course, this suggests that elements of ℋ must have some kind of smooth-
ness or regularity to them, since arbitrary sets of functions (such as 𝐿2 func-
tions on a subset of R𝑑) do not have this property. Via the Riesz represen-
tation theorem, it can be shown that this is also a sufficient condition for a
Hilbert space of functions on 𝑋 to be an RKHS.

A classic paper on the abstract theory of RKHSs is [4].

3. Mercer’s theorem—RKHS on sets with finite measure

The RKHS ℋ as defined above is still a very abstract object. If we make some
additional assumptions about the set on which the functions are defined, we
can get a much more precise characterization.

Suppose 𝑋 is compact and has a finite measure 𝜇 (e.g., 𝑋 is a closed and
bounded subset of R𝑑, and 𝜇 is standard Lebesgue measure), and 𝑘 is a
continuous positive definite kernel. Then the integral operator 𝑇∶ 𝐿2(𝑋) →
𝐿2(𝑋) defined by

(𝑇 𝑓)(𝑥) = ∫
𝑋

𝑘(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

is a compact, self-adjoint operator. Therefore, it has an orthogonal decom-
position

𝑇 𝑓 = ∑
𝑖

𝜆𝑖𝑓𝑖 ⊗ 𝑓𝑖,

2Essentially, this lets us consider infinite linear combinations of shifted kernel functions.
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where {𝜆𝑖}∞
𝑖=1 is the set of eigenvalues of 𝑇 (which are necessarily nonneg-

ative, and which we put in decreasing order), and the eigenfunctions {𝑓𝑖}
form an orthonormal basis for 𝐿2(𝑋). Furthermore, we can write

𝑘(𝑥, 𝑦) =
∞

∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥)𝑓𝑖(𝑦),

which converges uniformly in 𝑥 and 𝑦.
It is easily shown that

trace(𝑇 ) =
∞

∑
𝑖=1

𝜆𝑖 = ∫
𝑋

𝑘(𝑥, 𝑥) 𝑑𝑥,

and the squared Hilbert-Schmidt norm

‖𝑇 ‖2
HS =

∞
∑
𝑖=1

𝜆2
𝑖 = ∫

𝑋×𝑋
𝑘2(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Note that because 𝑋 has finite measure, and 𝑘 is continuous (and therefore
bounded), both quantities are finite.
The above-stated facts, which are generally called Mercer’s theorem, are
purely a result from functional analysis and the theory of integral operators.
We can, however, prove some interesting consequences for the RKHS.
Proposition 3.1. The RKHS ℋ is given by

ℋ = {∑ 𝑎𝑖𝑓𝑖 ∶ ∑ 𝑎2
𝑖

𝜆𝑖
< ∞} ,

and the RKHS inner product is given by

⟨∑ 𝑎𝑖𝑓𝑖, ∑ 𝑏𝑖𝑓𝑖⟩ℋ
= ∑ 𝑎𝑖𝑏𝑖

𝜆𝑖
.

Proof. We define ℋ′ to be the Hilbert space of functions defined above with
the above inner product. We first show that for each 𝑥 ∈ 𝑋, 𝑘(⋅, 𝑥) ∈ ℋ′.
Indeed 𝑘(⋅, 𝑥) = ∑ 𝜆𝑖𝑓𝑖(𝑥)𝑓𝑖, and

‖𝑘(⋅, 𝑥)‖2
ℋ′ = ∑ (𝜆𝑖𝑓𝑖(𝑥))2

𝜆𝑖

= ∑ 𝜆𝑖𝑓2
𝑖 (𝑥)

= 𝑘(𝑥, 𝑥)
< ∞.
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Furthermore, for 𝑓 = ∑ 𝑎𝑖𝑓𝑖 ∈ ℋ′,

⟨𝑓, 𝑘(⋅, 𝑥)⟩ℋ′ = ⟨∑ 𝑎𝑖𝑓𝑖 ∑ 𝜆𝑖𝑓𝑖(𝑥)𝑓𝑖⟩ℋ′

= ∑ 𝑎𝑖𝜆𝑖𝑓𝑖(𝑥)
𝜆𝑖

= ∑ 𝑎𝑖𝑓𝑖(𝑥)
= 𝑓(𝑥).

Clearly, then, ℋ ⊂ ℋ′, and 𝑘 satisfies the reproducing property on ℋ′

(which implies that the inner product of ℋ′ coincides with that of ℋ on
ℋ).

To show that we cannot have strict inclusion, suppose that 𝑓 is in the or-
thogonal complement of ℋ in ℋ′. All of the functions 𝑘(⋅, 𝑥) are in ℋ, so
⟨𝑓, 𝑘(⋅, 𝑥)⟩ = 0. But 𝑘 satisfies the reproducing property on all of ℋ′, so this
means that 𝑓(𝑥) = 0 for all 𝑥, i.e., 𝑓 = 0. Because ℋ is closed, this implies
ℋ = ℋ′.

A simple consequence of this fact is the following: ℋ = 𝑇 1/2(𝐿2(𝑋)), and
𝑇 1/2 is, in fact, an isometry (preserving distances and inner products) be-
tween the two spaces. In fact, the set of vectors {√𝜆𝑖𝑓𝑖}∞

𝑖=1 is an orthonor-
mal basis for ℋ.

4. Regression and Interpolation

We now consider how to estimate a function 𝑓∗ given measurements of the
form 𝑦𝑖 = 𝑓∗(𝑥𝑖), 𝑖 ∈ {1, … , 𝑁}. We will assume that 𝑓∗ ∈ ℋ (not always
a reasonable assumption, considering the comment at the end of the last
section!).

Since values of 𝑓∗ can be expressed as inner products, we consider a more
general framework: we make (potentially noisy) observation of the form 𝑦 =
𝒜 𝑓∗ + 𝜖 ∈ R𝑁, where 𝜖 is a noise vector, and 𝒜∶ ℋ → 𝑅𝑁 is defined by

𝒜 𝑓 = ⎡⎢
⎣

⟨𝑔1, 𝑓⟩
⋮

⟨𝑔𝑁, 𝑓⟩
⎤⎥
⎦
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for some elements 𝑔1, … , 𝑔𝑁 ∈ ℋ. We try to estimate 𝑓∗ by the following
optimization problem:

min
𝑓∈ℋ

𝑁
∑
𝑖=1

(𝑦𝑖 − ⟨𝑔𝑖, 𝑓⟩)2 + 𝛼‖𝑓‖2 = min
𝑓∈ℋ

‖𝑦 − 𝒜 𝑓‖2
ℓ𝑁

2
+ 𝛼‖𝑓‖2,

where 𝛼 ≥ 0 is a regularization parameter. The objective function 𝐹 is
strictly convex in 𝑓, so we can solve it by setting the gradient equal to 0:

∇𝐹 = 2𝛼𝑓 − 2 𝒜∗(𝑦 − 𝒜 𝑓) = 0. (1)

There are two standard ways to solve (1). One way is to gather all the
terms involving 𝑓 on one side and solving, which results in the common ridge
regression formula

̂𝑓 = (𝛼 ℐ + 𝒜∗ 𝒜)−1 𝒜∗ 𝑦. (2)
This formula can be useful for theoretical analysis, but, since it involves the
inversion of an infinite-dimensional operator, it is not usually very tractable
to compute directly. Furthermore, it is, in general, not even well-defined for
𝛼 = 0, since 𝒜∗ 𝒜 cannot have full rank unless ℋ is finite-dimensional.

Instead, we note that the solution ̂𝑓 to (1) must have the form

̂𝑓 = 𝒜∗ 𝑎 =
𝑁

∑
𝑖=1

𝑎𝑖𝑔𝑖

for some 𝑎 ∈ R𝑁. For any solution ̂𝑎 to the equation

𝛼𝑎 − (𝑦 − 𝒜 𝒜∗ 𝑎) = 0,

̂𝑓 = 𝒜∗ ̂𝑎 solves (1). We can solve this in terms of 𝑎 as

̂𝑎 = (𝛼𝐼𝑁 + 𝒜 𝒜∗)−1𝑦, (3)

where 𝐼𝑁 denotes the 𝑁 × 𝑁 identity matrix. Solving for ̂𝑎 simply (or not,
if 𝑁 is large) involves inverting an 𝑁 × 𝑁 matrix. We can easily check that
𝒜 𝒜∗ is just the familiar Gram matrix of the set {𝑔𝑖}; its (𝑖, 𝑗)-th entry is
the inner product ⟨𝑔𝑖, 𝑔𝑗⟩.

For 𝛼 > 0, the optimization problem is strictly convex, so its solution is
unique, and both formulas above give the same solution. If 𝛼 = 0 we can
instead consider the limiting (as 𝛼 ↓ 0) problem

min
𝑓∈ℋ

‖𝑓‖ s.t. 𝒜 𝑓 = 𝑦,
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and it is easily seen by linear algebra arguments that, if 𝒜 𝒜∗ has full rank,
the interpolant ̂𝑓 = 𝒜∗(𝒜 𝒜∗)−1𝑦 is indeed the unique solution.

In our case, the linear measurements are simply point evaluations, so we
can write 𝑔𝑖 = 𝑘(⋅, 𝑥𝑖). Then (𝒜 𝒜∗)𝑖𝑗 = ⟨𝑘(⋅, 𝑥𝑖), 𝑘(⋅, 𝑥𝑗)⟩ = 𝑘(𝑥𝑖, 𝑥𝑗), so
𝐾 = 𝒜 𝒜∗ is simply the Gram matrix. Because 𝑘 is positive definite, this
matrix is full-rank whenever all of the 𝑥′

𝑖𝑠 are distinct.

Another useful version of the formulas above is to write

̂𝑓(𝑥) =
𝑁

∑
𝑖=1

𝑦𝑖𝑢𝑖(𝑥),

where the “Lagrange functions” {𝑢𝑖} are defined by 𝑢𝑖 = 𝒜∗(𝛼𝐼𝑁+𝒜 𝒜∗)−1𝑒𝑖,
where 𝑒𝑖 is the 𝑖th standard basis vector in R𝑁. This is equivalent to

⎡⎢
⎣

𝑢1(𝑥)
⋮

𝑢𝑁(𝑥)
⎤⎥
⎦

= (𝛼𝐼𝑁 + 𝐾)−1 ⎡⎢
⎣

𝑘(𝑥, 𝑋1)
⋮

𝑘(𝑥, 𝑋𝑁)
⎤⎥
⎦

.

One can easily check that if 𝛼 = 0, and the 𝑥𝑖’s are distinct, then 𝑢𝑖(𝑥𝑗) =
1{𝑖=𝑗}; thus ̂𝑓 indeed interpolates the observed values of 𝑓∗.

4.1. Some error analysis

Given a (deterministic) set of points 𝑥1, … , 𝑥𝑁, there is a quick way to get
a pointwise error bound of our estimate in terms of ‖𝑓∗‖ℋ. For 𝑥0 ∈ 𝑋, we
have

|𝑓∗(𝑥0) − ̂𝑓(𝑥0)| = ∣𝑓∗(𝑥0) −
𝑁

∑
𝑖=1

𝑦𝑖𝑢𝑖(𝑥0)∣

= ∣𝑓∗(𝑥0) −
𝑁

∑
𝑖=1

(𝑓∗(𝑥𝑖) + 𝜉𝑖)𝑢𝑖(𝑥0)∣

= ∣⟨𝑓∗, 𝑘(𝑥0, ⋅) −
𝑁

∑
𝑖=1

𝑢𝑖(𝑥0)𝑘(𝑥𝑖, ⋅)⟩
ℋ

+
𝑁

∑
𝑖=1

𝜉𝑖𝑢𝑖(𝑥0)∣

≤ ∥𝑘(𝑥0, ⋅) −
𝑁

∑
𝑖=1

𝑢𝑖(𝑥0)𝑘(𝑥𝑖, ⋅)∥
ℋ

⋅ ‖𝑓∗‖ℋ + ∣
𝑁

∑
𝑖=1

𝜉𝑖𝑢𝑖(𝑥0)∣ .
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Note that

∥𝑘(𝑥0, ⋅) −
𝑁

∑
𝑖=1

𝑢𝑖(𝑥0)𝑘(𝑥𝑖, ⋅)∥
2

ℋ

= ∥𝑘(𝑥0, ⋅) − (𝛼 + 𝒜∗ 𝒜)−1 𝒜∗ 𝒜 𝑘(𝑥0, ⋅)∥2
ℋ

= 𝑘(𝑥0, 𝑥0)
− 2⟨(𝛼 + 𝒜∗ 𝒜)−1 𝒜∗ 𝒜 𝑘(𝑥0, ⋅), 𝑘(𝑥0, ⋅)⟩ℋ

+ ⟨((𝛼 + 𝒜∗ 𝒜)−1 𝒜∗ 𝒜)2𝑘(𝑥0, ⋅), 𝑘(𝑥0, ⋅)⟩ℋ

≤ 𝑘(𝑥0, 𝑥0) − ⟨(𝛼 + 𝒜∗ 𝒜)−1 𝒜∗ 𝒜 𝑘(𝑥0, ⋅), 𝑘(𝑥0, ⋅)⟩ℋ

= 𝑘(𝑥0, 𝑥0) −
𝑁

∑
𝑖=1

𝑘(𝑥0, 𝑥𝑖)𝑢𝑖(𝑥0).

Thus we can bound the “bias” error at 𝑥0 (that depends on ‖𝑓∗‖ℋ) in terms of
how well the kernel regression/interpolation procedure recovers the function
𝑘(𝑥0, ⋅).

5. Gaussian processes

Reproducing kernel Hilbert spaces have many similarities to Gaussian pro-
cesses. A fairly digestible introduction to Gaussian processes, including their
connection to RKHSs, can be found in the book [3]. An extremely technical
overview of the close relationship between these concepts can be found in [5].

5.1. Review of (multivariate) normal distributions

The standard normal distribution 𝒩(0, 1) has density 𝑝(𝑥) = 1√
2𝜋𝑒−𝑥2/2. A

more general normal distribution with mean 𝜇 ∈ R and variance 𝜎2 > 0 has
the distribution of 𝜇 + 𝜎𝑋, where 𝑋 ∼ 𝒩(0, 1).

There are several ways to define a multivariate normal random variable; we
use the following, which is fairly simple to work with:

Definition 5.1. A random variable 𝑋 has a multivariate normal distribution
if it can be written 𝑋 = 𝐴𝑊 +𝜇, where 𝜇 ∈ R𝑑, and, for some 𝑚, 𝐴 ∈ R𝑑×𝑚,
and 𝑊 is a vector of 𝑚 i.i.d. standard normal random variables.

Besides the mean 𝜇, the other characteristic quantity of the multivariate
normal distribution is its covariance Σ = E 𝑋𝑋𝑇. One can easily verify
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that, from the above definition, we have Σ = 𝐴𝐴𝑇. If Σ is nonsingular
(which is equivalent to 𝐴 having linearly independent rows), the distribution
of 𝑋 has the familiar density

𝑝(𝑥) = 1
(2𝜋)𝑑/2

√
det Σ

exp (−1
2

(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)) .

An essential property of the multivariate normal random variable is that the
vector ⟨𝑋, 𝑧⟩ = ∑𝑑

𝑖=1 𝑧𝑖𝑋𝑖 has a (univariate) normal distribution for any
𝑧 ∈ R𝑑.3 This can easily be verified by the fact that a linear combination of
i.i.d. standard normal variables is normal.4

5.2. Gaussian process definition

The next, more general step is to consider functions whose values are Gaus-
sian:

Definition 5.2. A (centered) Gaussian process on a space 𝑋 is a ran-
dom function 𝑍∶ 𝑋 → R such that, for every integer 𝑁 ≥ 1 and every
𝑥1, … , 𝑥𝑁 ∈ 𝑋, the vector (𝑍(𝑥1), … , 𝑍(𝑥𝑁)) has a zero-mean multivariate
normal distribution.

The distribution of a Gaussian process is completely determined by its co-
variance function 𝑘(𝑥, 𝑦) ∶= E 𝑍(𝑥)𝑍(𝑦). Given fixed 𝑥1, … , 𝑥𝑁 ∈ 𝑋, the
normal random vector (𝑍(𝑥1), … , 𝑍(𝑥𝑁)) has covariance matrix 𝐾, where
𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). One can easily check that 𝑘 is a positive semidefinite kernel
on 𝑋.

5.3. Bayesian inference

Given 𝑥1, … , 𝑥𝑁 ∈ 𝑋, suppose we observe 𝑦𝑖 = 𝑍(𝑥𝑖) + 𝜉𝑖 for each 𝑖 ∈
{1, … , 𝑁}, where the 𝜉𝑖’s are i.i.d. 𝒩(0, 𝜎2) random variables independent
of 𝑍. Because the posterior distribution of 𝑍 is a (non-zero-mean) Gaussian
process, we can completely characterize it by computing its mean and co-
variance. Let ̄𝑥1, … , ̄𝑥𝑚 ∈ 𝑋. We want to find the distribution of ̄𝑦 =
3⟨𝑋, 𝑧⟩ ∼ 𝒩(⟨𝜇, 𝑧⟩, 𝑧𝑇Σ𝑧), to be precise.
4This property is often used in more theoretical works as the definition of a multivariate
normal variable, but deriving the density and other properties from this definition is more
complicated than is appropriate for these notes. See [6, Chapter 1] for a review of this
construction.
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(𝑍( ̄𝑥1), … , 𝑍( ̄𝑥𝑚)) conditioned on our data 𝑥 = (𝑥1, … , 𝑥𝑁) and 𝑦 = (𝑦1, … , 𝑦𝑁).
Note that E 𝑦𝑖𝑦𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) + 𝜎21{𝑖=𝑗}, so the Gaussian random vector 𝑦
has zero mean and covariance 𝑘(𝑥, 𝑥) + 𝜎2𝐼𝑁. Denote 𝐾 = [𝑘( ̄𝑥𝑖, ̄𝑥𝑗)]𝑖,𝑗 and
𝐾 = [𝑘(𝑥𝑖, ̄𝑥𝑗)]𝑖,𝑗. Bayes rule gives

𝑝( ̄𝑦 | 𝑦) = 𝑝( ̄𝑦, 𝑦)
∫ 𝑝( ̄𝑦, 𝑦) 𝑑 ̄𝑦 𝑑𝑦

= exp ⎛⎜
⎝

−1
2

[𝑦𝑇 ̄𝑦𝑇] [𝐾 + 𝜎2𝐼𝑁 𝐾
𝐾𝑇 𝐾

]
−1

[𝑦
̄𝑦] + 𝐶(𝑦)⎞⎟

⎠
A Schur complement block matrix inverse formula gives

[𝐾 + 𝜎2𝐼𝑁 𝐾
𝐾𝑇 𝐾

]
−1

= [𝐼𝑁 −(𝐾 + 𝜎2𝐼𝑁)−1𝐾
0 𝐼𝑚

]

× [(𝐾 + 𝜎2𝐼𝑁)−1 0
0 (𝐾 − 𝐾𝑇(𝐾 + 𝜎2𝐼𝑁)−1𝐾)−1]

× [ 𝐼𝑁 0
−𝐾𝑇(𝐾 + 𝜎2𝐼𝑁)−1 𝐼𝑚

] .

Then, all of the terms involving ̄𝑦 can be collected into a quadratic form of
the vector ̄𝑦 −𝐾𝑇(𝐾 +𝜎2𝐼𝑁)−1𝑦 on the matrix (𝐾−𝐾𝑇(𝐾 +𝜎2𝐼𝑁)−1𝐾)−1.
Thus the posterior distribution of ̄𝑦 is

̄𝑦 | 𝑦 ∼ 𝒩(𝐾𝑇(𝐾 + 𝜎2𝐼𝑁)−1𝑦, 𝐾 − 𝐾𝑇(𝐾 + 𝜎2𝐼𝑁)−1𝐾).

Considering a single point 𝑥0 ∈ 𝑋, the posterior distribution of 𝑍(𝑥0) is
normal with mean

E[𝑍(𝑥0) | 𝑦] =
𝑁

∑
𝑖=1

𝑎𝑖𝑘(𝑥0, 𝑥𝑖),

where 𝑎 = (𝐾 + 𝜎2𝐼𝑁)−1𝑦. This is precisely the RKHS regression estimate
with kernel 𝑘 and regularization parameter 𝛼 = 𝜎2! One can quickly check
that the variance of 𝑍(𝑥0) given 𝑦 is

var(𝑍(𝑥0) | 𝑦) = 𝑘(𝑥0, 𝑥0) −
𝑁

∑
𝑖=1

𝑘(𝑥0, 𝑥𝑖)𝑢𝑖(𝑥0).

Note that this we have seem this exact expression before in Section 4.1!
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5.4. Karhunen-Loève decomposition

The following famous theorem describes how the Gaussian process can be
decomposed according to Mercer’s theorem:

Theorem 5.3 (Karhunen-Loève). Let 𝑍 be the Gaussian process on 𝑋 with
covariance function 𝑘. Let 𝑇 = ∑𝑁

𝑖=1 𝜆𝑖𝑓𝑖 ⊗ 𝑓𝑖 be the eigenvalue decomposi-
tion of the integral operator corresponding to 𝑘. Then, we can write

𝑍(𝑥) =
∞

∑
𝑖=1

√𝜆𝑖𝑍𝑖𝑓𝑖(𝑥),

where the 𝑍𝑖’s are i.i.d. standard normal random variables, and the conver-
gence is in mean square, uniformly in 𝑥.

Proof. Let
𝑍𝑖 = 1

√𝜆𝑖
⟨𝑍, 𝑓𝑖⟩𝐿2

= 1
√𝜆𝑖

∫
𝑋

𝑍(𝑥)𝑓𝑖(𝑥) 𝑑𝑥.

Each 𝑍𝑖 is Gaussian, as an integral (i.e., a limit of finite sums) of a Gaussian
process. Furthermore,

E 𝑍𝑖𝑍𝑗 = 1
√𝜆𝑖𝜆𝑗

E ∫
𝑋×𝑋

𝑍(𝑥)𝑓𝑖(𝑥)𝑍(𝑦)𝑓𝑗(𝑦) 𝑑𝑥 𝑑𝑦

= 1
√𝜆𝑖𝜆𝑗

∫
𝑋×𝑋

E 𝑍(𝑥)𝑍(𝑦)𝑓𝑖(𝑥)𝑓𝑗(𝑦) 𝑑𝑥 𝑑𝑦

= 1
√𝜆𝑖𝜆𝑗

∫
𝑋×𝑋

𝑘(𝑥, 𝑦)𝑓𝑖(𝑥)𝑓𝑗(𝑦) 𝑑𝑥 𝑑𝑦

= 1
√𝜆𝑖𝜆𝑗

⟨𝑇 1/2𝑓𝑖, 𝑇 1/2𝑓𝑗⟩𝐿2

= {
1 if 𝑖 = 𝑗
0 otherwise.

Therefore, each 𝑍𝑖 ∼ 𝒩(0, 1), and, being jointly Gaussian random variables
that are uncorrelated, they are independent.

11
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To show convergence, note first that, for 𝑥 ∈ 𝑋,

E 𝑍(𝑥)𝑍𝑖 = 1
√𝜆𝑖

E 𝑍(𝑥) ∫
𝑋

𝑍(𝑦)𝑓𝑖(𝑦) 𝑑𝑦

= 1
√𝜆𝑖

∫
𝑋

E 𝑍(𝑥)𝑍(𝑦)𝑓𝑖(𝑦) 𝑑𝑦

= 1
√𝜆𝑖

∫
𝑋

𝑘(𝑥, 𝑦)𝑓𝑖(𝑦) 𝑑𝑦

= √𝜆𝑖𝑓𝑖(𝑥).

Then, for 𝑁 ≥ 1 and 𝑥 ∈ 𝑋,

E (𝑍(𝑥) −
𝑁

∑
𝑖=1

√𝜆𝑖𝑍𝑖𝑓𝑖(𝑥))
2

= E 𝑍2(𝑥) +
𝑁

∑
𝑖=1

𝜆𝑖𝑓2
𝑖 (𝑥) E 𝑍2

𝑖

− 2
𝑁

∑
𝑖=1

√𝜆𝑖𝑓𝑖(𝑥) E 𝑍(𝑥)𝑍𝑖

= 𝑘(𝑥, 𝑥) −
𝑁

∑
𝑖=1

𝜆𝑖𝑓2
𝑖 (𝑥),

which, by Mercer’s theorem, converges to zero uniformly in 𝑥 as 𝑁 → ∞.

Note that the KL theorem implies that the RKHS norm of the canonical
Gaussian process associated with 𝐾 is infinite! An exploration of the con-
nections (including this interesting paradox) between Gaussian processes and
the RKHS of their kernels fact can be found in [5].
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