1. Kernel function basics

Kernels methods are a useful family of techniques for regression, interpolation, and classification. Given a "data" space X (which we will always take, in these notes, to be \mathbf{R}^{d} or a subset thereof), we will consider (real ${ }^{1}$ "kernels" to be functions $k: X \times X \rightarrow \mathbf{R}$ with the follow properties:

- Symmetry: $k(x, y)=k(y, x)$.
- Positive definiteness: for all $x_{1}, \ldots x_{N} \in X$, the Gram matrix K given by $K_{i j}=k\left(x_{i}, x_{j}\right)$ is positive semidefinite (which we write $K \succeq 0$), and if the x_{i} 's are distinct, K is (strictly) positive definite (which we write $K \succ 0$).

A famous result of kernel theory is that a kernel k is positive definite if and only if it can be expressed in the following form:

$$
k(x, y)=\langle\Phi(x), \Phi(y)\rangle
$$

where $\Phi: X \rightarrow \mathcal{H}$ is a map from X into some Hilbert space \mathcal{H}. However, if we are only given the function k, finding such a Hilbert space map Φ is often difficult.

Many of the kernels we use in practice (on \mathbf{R}^{d}) are stationary: i.e., $k(x, y)=$ $\phi(x-y)$, where $\phi: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is a function. A single-variable function such that a kernel constructed from it is positive definite is called a positive definite function. The following famous theorem characterizes all positive definite funcitons on \mathbf{R}^{d} :

Theorem 1.1 (Bochner's theorem [1, Theorem 6.6]). A function $\phi: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is positive definite if and only if it is the Fourier transform of a nonnegative and nonzero Radon measure on \mathbf{R}^{d}.

A comprehensive treatment of what kinds of functions are "positive definite" on more general spaces is the book by Berg, Christensen, and Ressel [2].

Most of the stationary kernels we use in practice have an even more specific form: radial basis functions (RBFs) are kernels of the form $k(x, y)=\phi(\| x-$

[^0]$y \|)$, where $\|\cdot\|$ is the Euclidean $\left(\ell_{2}\right)$ norm on \mathbf{R}^{d}. Bochner's theorem also has versions for radial functions (again, see [1, Chapter 6]). A function $\phi:[0, \infty) \rightarrow \mathbf{R}$ which gives rise to a positive definite kernel on \mathbf{R}^{d} is also called positive definite. In general, this will depend on the dimension d. However, certain functions form positive definite radial basis functions for all dimensions: these are called completely monotone functions. See [1, Chapter 7] for a characterization.

Examples of kernels from completely monotone functions (which are probably the most common used in practice) are the squared-exponential RBF

$$
k(x, y)=e^{-\|x-y\|^{2} / 2 \ell^{2}}
$$

and the Matérn kernels

$$
k(x, y)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu}\|x-y\|}{\ell}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu}\|x-y\|}{\ell}\right)
$$

where $\nu, \ell>0$, and K_{ν} denotes the modified Bessel function of the second kind of order ν (notation is from [3]). ν represents the smoothness of the kernel; it is a fact that as $\nu \rightarrow \infty$, the Matérn function converges to a squared-exponential function.

2. The RKHS

Given a kernel k, we can define its reproducing kernel Hilbert space (RKHS). We define a set of functions on X

$$
\mathcal{H}_{0}=\left\{\sum_{i=1}^{N} a_{i} k\left(\cdot, x_{i}\right): a_{1}, \ldots, a_{N} \in \mathbf{R}, x_{1}, \ldots, x_{N} \in X\right\}
$$

with an inner product

$$
\left\langle\sum_{i=1}^{M} a_{i} k\left(\cdot, x_{i}\right), \sum_{j=1}^{N} b_{j} k\left(\cdot, y_{j}\right)\right\rangle=\sum_{i=1}^{M} \sum_{i=1}^{N} a_{i} b_{j} k\left(x_{i}, x_{j}\right) .
$$

The fact that k is positive definite implies that this is a true inner product, so \mathcal{H}_{0} is an inner product space. We then take our RKHS \mathcal{H} to be the
topological completion of \mathcal{H}_{0} with respect to the norm induced by the inner product. ${ }^{2}$
Note that if $f=\sum a_{i} k\left(\cdot, x_{i}\right)$, then

$$
f(x)=\sum a_{i} k\left(x, x_{i}\right)=\sum a_{i}\left\langle k(\cdot, x), k\left(\cdot, x_{i}\right)=\langle f, k(\cdot x)\rangle .\right.
$$

In other words, taking an inner product with a kernel function centered at x produces the value of a function at x. This phenomenon is what gives us the term "reproducing kernel."

A useful property of the RKHS is the the evaluation functional $f \mapsto f(x)$ is bounded:

$$
|f(x)|=|\langle f, k(\cdot, x)\rangle| \leq\|f\|\|k(\cdot, x)\|=\|f\| \sqrt{k(x, x)}
$$

Of course, this suggests that elements of \mathcal{H} must have some kind of smoothness or regularity to them, since arbitrary sets of functions (such as L_{2} functions on a subset of \mathbf{R}^{d}) do not have this property. Via the Riesz representation theorem, it can be shown that this is also a sufficient condition for a Hilbert space of functions on X to be an RKHS.
A classic paper on the abstract theory of RKHSs is [4].

3. Mercer's theorem-RKHS on sets with finite measure

The RKHS \mathcal{H} as defined above is still a very abstract object. If we make some additional assumptions about the set on which the functions are defined, we can get a much more precise characterization.
Suppose X is compact and has a finite measure μ (e.g., X is a closed and bounded subset of \mathbf{R}^{d}, and μ is standard Lebesgue measure), and k is a continuous positive definite kernel. Then the integral operator $T: L_{2}(X) \rightarrow$ $L_{2}(X)$ defined by

$$
(T f)(x)=\int_{X} k(x, y) f(y) d y
$$

is a compact, self-adjoint operator. Therefore, it has an orthogonal decomposition

$$
T f=\sum_{i} \lambda_{i} f_{i} \otimes f_{i}
$$

[^1]where $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ is the set of eigenvalues of T (which are necessarily nonnegative, and which we put in decreasing order), and the eigenfunctions $\left\{f_{i}\right\}$ form an orthonormal basis for $L_{2}(X)$. Furthermore, we can write
$$
k(x, y)=\sum_{i=1}^{\infty} \lambda_{i} f_{i}(x) f_{i}(y)
$$
which converges uniformly in x and y.
It is easily shown that
$$
\operatorname{trace}(T)=\sum_{i=1}^{\infty} \lambda_{i}=\int_{X} k(x, x) d x
$$
and the squared Hilbert-Schmidt norm
$$
\|T\|_{\mathrm{HS}}^{2}=\sum_{i=1}^{\infty} \lambda_{i}^{2}=\int_{X \times X} k^{2}(x, y) d x d y .
$$

Note that because X has finite measure, and k is continuous (and therefore bounded), both quantities are finite.
The above-stated facts, which are generally called Mercer's theorem, are purely a result from functional analysis and the theory of integral operators. We can, however, prove some interesting consequences for the RKHS.
Proposition 3.1. The $R K H S \mathcal{H}$ is given by

$$
\mathcal{H}=\left\{\sum a_{i} f_{i}: \sum \frac{a_{i}^{2}}{\lambda_{i}}<\infty\right\}
$$

and the RKHS inner product is given by

$$
\left\langle\sum a_{i} f_{i}, \sum b_{i} f_{i}\right\rangle_{\mathcal{H}}=\sum \frac{a_{i} b_{i}}{\lambda_{i}}
$$

Proof. We define \mathcal{H}^{\prime} to be the Hilbert space of functions defined above with the above inner product. We first show that for each $x \in X, k(\cdot, x) \in \mathcal{H}^{\prime}$. Indeed $k(\cdot, x)=\sum \lambda_{i} f_{i}(x) f_{i}$, and

$$
\begin{aligned}
\|k(\cdot, x)\|_{\mathcal{H}^{\prime}}^{2} & =\sum \frac{\left(\lambda_{i} f_{i}(x)\right)^{2}}{\lambda_{i}} \\
& =\sum \lambda_{i} f_{i}^{2}(x) \\
& =k(x, x) \\
& <\infty
\end{aligned}
$$

Furthermore, for $f=\sum a_{i} f_{i} \in \mathcal{H}^{\prime}$,

$$
\begin{aligned}
\langle f, k(\cdot, x)\rangle_{\mathcal{H}^{\prime}} & =\left\langle\sum a_{i} f_{i} \sum \lambda_{i} f_{i}(x) f_{i}\right\rangle_{\mathcal{H}^{\prime}} \\
& =\sum \frac{a_{i} \lambda_{i} f_{i}(x)}{\lambda_{i}} \\
& =\sum a_{i} f_{i}(x) \\
& =f(x)
\end{aligned}
$$

Clearly, then, $\mathcal{H} \subset \mathcal{H}^{\prime}$, and k satisfies the reproducing property on \mathcal{H}^{\prime} (which implies that the inner product of \mathcal{H}^{\prime} coincides with that of \mathcal{H} on $\mathcal{H})$.

To show that we cannot have strict inclusion, suppose that f is in the orthogonal complement of \mathcal{H} in \mathcal{H}^{\prime}. All of the functions $k(\cdot, x)$ are in \mathcal{H}, so $\langle f, k(\cdot, x)\rangle=0$. But k satisfies the reproducing property on all of \mathcal{H}^{\prime}, so this means that $f(x)=0$ for all x, i.e., $f=0$. Because \mathcal{H} is closed, this implies $\mathcal{H}=\mathcal{H}^{\prime}$.

A simple consequence of this fact is the following: $\mathcal{H}=T^{1 / 2}\left(L_{2}(X)\right)$, and $T^{1 / 2}$ is, in fact, an isometry (preserving distances and inner products) between the two spaces. In fact, the set of vectors $\left\{\sqrt{\lambda_{i}} f_{i}\right\}_{i=1}^{\infty}$ is an orthonormal basis for \mathcal{H}.

4. Regression and Interpolation

We now consider how to estimate a function f^{*} given measurements of the form $y_{i}=f^{*}\left(x_{i}\right), i \in\{1, \ldots, N\}$. We will assume that $f^{*} \in \mathcal{H}$ (not always a reasonable assumption, considering the comment at the end of the last section!).

Since values of f^{*} can be expressed as inner products, we consider a more general framework: we make (potentially noisy) observation of the form $y=$ $\mathcal{A} f^{*}+\epsilon \in \mathbf{R}^{N}$, where ϵ is a noise vector, and $\mathcal{A}: \mathcal{H} \rightarrow R^{N}$ is defined by

$$
\mathcal{A} f=\left[\begin{array}{c}
\left\langle g_{1}, f\right\rangle \\
\vdots \\
\left\langle g_{N}, f\right\rangle
\end{array}\right]
$$

for some elements $g_{1}, \ldots, g_{N} \in \mathcal{H}$. We try to estimate f^{*} by the following optimization problem:

$$
\min _{f \in \mathcal{H}} \sum_{i=1}^{N}\left(y_{i}-\left\langle g_{i}, f\right\rangle\right)^{2}+\alpha\|f\|^{2}=\min _{f \in \mathcal{H}}\|y-\mathcal{A} f\|_{\ell_{2}^{N}}^{2}+\alpha\|f\|^{2},
$$

where $\alpha \geq 0$ is a regularization parameter. The objective function F is strictly convex in f, so we can solve it by setting the gradient equal to 0 :

$$
\begin{equation*}
\nabla F=2 \alpha f-2 \mathcal{A}^{*}(y-\mathcal{A} f)=0 \tag{1}
\end{equation*}
$$

There are two standard ways to solve (1). One way is to gather all the terms involving f on one side and solving, which results in the common ridge regression formula

$$
\begin{equation*}
\hat{f}=\left(\alpha \mathcal{J}+\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} y \tag{2}
\end{equation*}
$$

This formula can be useful for theoretical analysis, but, since it involves the inversion of an infinite-dimensional operator, it is not usually very tractable to compute directly. Furthermore, it is, in general, not even well-defined for $\alpha=0$, since $\mathcal{A}^{*} \mathcal{A}$ cannot have full rank unless \mathcal{H} is finite-dimensional.
Instead, we note that the solution \hat{f} to (1) must have the form

$$
\widehat{f}=\mathcal{A}^{*} a=\sum_{i=1}^{N} a_{i} g_{i}
$$

for some $a \in \mathbf{R}^{N}$. For any solution \hat{a} to the equation

$$
\alpha a-\left(y-\mathcal{A} \mathcal{A}^{*} a\right)=0
$$

$\hat{f}=\mathcal{A}^{*} \hat{a}$ solves (1). We can solve this in terms of a as

$$
\begin{equation*}
\hat{a}=\left(\alpha I_{N}+\mathcal{A} \mathcal{A}^{*}\right)^{-1} y \tag{3}
\end{equation*}
$$

where I_{N} denotes the $N \times N$ identity matrix. Solving for \hat{a} simply (or not, if N is large) involves inverting an $N \times N$ matrix. We can easily check that $\mathcal{A} \mathcal{A}^{*}$ is just the familiar Gram matrix of the set $\left\{g_{i}\right\}$; its (i, j)-th entry is the inner product $\left\langle g_{i}, g_{j}\right\rangle$.
For $\alpha>0$, the optimization problem is strictly convex, so its solution is unique, and both formulas above give the same solution. If $\alpha=0$ we can instead consider the limiting (as $\alpha \downarrow 0$) problem

$$
\min _{f \in \mathcal{H}}\|f\| \text { s.t. } \mathcal{A} f=y
$$

and it is easily seen by linear algebra arguments that, if $\mathcal{A} \mathcal{A}^{*}$ has full rank, the interpolant $\hat{f}=\mathcal{A}^{*}\left(\mathcal{A} \mathcal{A}^{*}\right)^{-1} y$ is indeed the unique solution.

In our case, the linear measurements are simply point evaluations, so we can write $g_{i}=k\left(\cdot, x_{i}\right)$. Then $\left(\mathcal{A} \mathcal{A}^{*}\right)_{i j}=\left\langle k\left(\cdot, x_{i}\right), k\left(\cdot, x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)$, so $K=\mathcal{A} \mathcal{A}^{*}$ is simply the Gram matrix. Because k is positive definite, this matrix is full-rank whenever all of the $x_{i}^{\prime} s$ are distinct.

Another useful version of the formulas above is to write

$$
\hat{f}(x)=\sum_{i=1}^{N} y_{i} u_{i}(x)
$$

where the "Lagrange functions" $\left\{u_{i}\right\}$ are defined by $u_{i}=\mathcal{A}^{*}\left(\alpha I_{N}+\mathcal{A} \mathcal{A}^{*}\right)^{-1} e_{i}$, where e_{i} is the i th standard basis vector in \mathbf{R}^{N}. This is equivalent to

$$
\left[\begin{array}{c}
u_{1}(x) \\
\vdots \\
u_{N}(x)
\end{array}\right]=\left(\alpha I_{N}+K\right)^{-1}\left[\begin{array}{c}
k\left(x, X_{1}\right) \\
\vdots \\
k\left(x, X_{N}\right)
\end{array}\right] .
$$

One can easily check that if $\alpha=0$, and the x_{i} 's are distinct, then $u_{i}\left(x_{j}\right)=$ $\mathbf{1}_{\{i=j\}}$; thus \hat{f} indeed interpolates the observed values of f^{*}.

4.1. Some error analysis

Given a (deterministic) set of points x_{1}, \ldots, x_{N}, there is a quick way to get a pointwise error bound of our estimate in terms of $\left\|f^{*}\right\|_{\mathcal{H}}$. For $x_{0} \in X$, we have

$$
\begin{aligned}
\left|f^{*}\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right| & =\left|f^{*}\left(x_{0}\right)-\sum_{i=1}^{N} y_{i} u_{i}\left(x_{0}\right)\right| \\
& =\left|f^{*}\left(x_{0}\right)-\sum_{i=1}^{N}\left(f^{*}\left(x_{i}\right)+\xi_{i}\right) u_{i}\left(x_{0}\right)\right| \\
& =\left|\left\langle f^{*}, k\left(x_{0}, \cdot\right)-\sum_{i=1}^{N} u_{i}\left(x_{0}\right) k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}+\sum_{i=1}^{N} \xi_{i} u_{i}\left(x_{0}\right)\right| \\
& \leq\left\|k\left(x_{0}, \cdot\right)-\sum_{i=1}^{N} u_{i}\left(x_{0}\right) k\left(x_{i}, \cdot\right)\right\|_{\mathcal{H}} \cdot\left\|f^{*}\right\|_{\mathcal{H}}+\left|\sum_{i=1}^{N} \xi_{i} u_{i}\left(x_{0}\right)\right| .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left\|k\left(x_{0}, \cdot\right)-\sum_{i=1}^{N} u_{i}\left(x_{0}\right) k\left(x_{i}, \cdot\right)\right\|_{\mathcal{H}}^{2}= & \left\|k\left(x_{0}, \cdot\right)-\left(\alpha+\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} \mathcal{A} k\left(x_{0}, \cdot\right)\right\|_{\mathcal{H}}^{2} \\
= & k\left(x_{0}, x_{0}\right) \\
& \quad-2\left\langle\left(\alpha+\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} \mathcal{A} k\left(x_{0}, \cdot\right), k\left(x_{0}, \cdot\right)\right\rangle_{\mathcal{H}} \\
& +\left\langle\left(\left(\alpha+\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} \mathcal{A}\right)^{2} k\left(x_{0}, \cdot\right), k\left(x_{0}, \cdot\right)\right\rangle_{\mathcal{H}} \\
\leq & k\left(x_{0}, x_{0}\right)-\left\langle\left(\alpha+\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} \mathcal{A} k\left(x_{0}, \cdot\right), k\left(x_{0}, \cdot\right)\right\rangle_{\mathcal{H}} \\
= & k\left(x_{0}, x_{0}\right)-\sum_{i=1}^{N} k\left(x_{0}, x_{i}\right) u_{i}\left(x_{0}\right)
\end{aligned}
$$

Thus we can bound the "bias" error at x_{0} (that depends on $\left\|f^{*}\right\|_{\mathcal{H}}$) in terms of how well the kernel regression/interpolation procedure recovers the function $k\left(x_{0}, \cdot\right)$.

5. Gaussian processes

Reproducing kernel Hilbert spaces have many similarities to Gaussian processes. A fairly digestible introduction to Gaussian processes, including their connection to RKHSs, can be found in the book [3]. An extremely technical overview of the close relationship between these concepts can be found in [5].

5.1. Review of (multivariate) normal distributions

The standard normal distribution $\mathcal{N}(0,1)$ has density $p(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. A more general normal distribution with mean $\mu \in \mathbf{R}$ and variance $\sigma^{2}>0$ has the distribution of $\mu+\sigma X$, where $X \sim \mathcal{N}(0,1)$.

There are several ways to define a multivariate normal random variable; we use the following, which is fairly simple to work with:

Definition 5.1. A random variable X has a multivariate normal distribution if it can be written $X=A W+\mu$, where $\mu \in \mathbf{R}^{d}$, and, for some $m, A \in \mathbf{R}^{d \times m}$, and W is a vector of m i.i.d. standard normal random variables.

Besides the mean μ, the other characteristic quantity of the multivariate normal distribution is its covariance $\Sigma=\mathbf{E} X X^{T}$. One can easily verify
that, from the above definition, we have $\Sigma=A A^{T}$. If Σ is nonsingular (which is equivalent to A having linearly independent rows), the distribution of X has the familiar density

$$
p(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

An essential property of the multivariate normal random variable is that the vector $\langle X, z\rangle=\sum_{i=1}^{d} z_{i} X_{i}$ has a (univariate) normal distribution for any $z \in \mathbf{R}^{d}{ }^{3}$ This can easily be verified by the fact that a linear combination of i.i.d. standard normal variables is normal. ${ }^{4}$

5.2. Gaussian process definition

The next, more general step is to consider functions whose values are Gaussian:

Definition 5.2. A (centered) Gaussian process on a space X is a random function $Z: X \rightarrow \mathbf{R}$ such that, for every integer $N \geq 1$ and every $x_{1}, \ldots, x_{N} \in X$, the vector $\left(Z\left(x_{1}\right), \ldots, Z\left(x_{N}\right)\right)$ has a zero-mean multivariate normal distribution.

The distribution of a Gaussian process is completely determined by its covariance function $k(x, y):=\mathbf{E} Z(x) Z(y)$. Given fixed $x_{1}, \ldots, x_{N} \in X$, the normal random vector $\left(Z\left(x_{1}\right), \ldots, Z\left(x_{N}\right)\right)$ has covariance matrix K, where $K_{i j}=k\left(x_{i}, x_{j}\right)$. One can easily check that k is a positive semidefinite kernel on X.

5.3. Bayesian inference

Given $x_{1}, \ldots, x_{N} \in X$, suppose we observe $y_{i}=Z\left(x_{i}\right)+\xi_{i}$ for each $i \in$ $\{1, \ldots, N\}$, where the ξ_{i} 's are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables independent of Z. Because the posterior distribution of Z is a (non-zero-mean) Gaussian process, we can completely characterize it by computing its mean and covariance. Let $\bar{x}_{1}, \ldots, \bar{x}_{m} \in X$. We want to find the distribution of $\bar{y}=$
${ }^{4}$ This property is often used in more theoretical works as the definition of a multivariate normal variable, but deriving the density and other properties from this definition is more complicated than is appropriate for these notes. See [6, Chapter 1] for a review of this construction.
$\left(Z\left(\bar{x}_{1}\right), \ldots, Z\left(\bar{x}_{m}\right)\right)$ conditioned on our data $x=\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$. Note that $\mathbf{E} y_{i} y_{j}=k\left(x_{i}, x_{j}\right)+\sigma^{2} \mathbf{1}_{\{i=j\}}$, so the Gaussian random vector y has zero mean and covariance $k(x, x)+\sigma^{2} I_{N}$. Denote $\bar{K}=\left[k\left(\bar{x}_{i}, \bar{x}_{j}\right)\right]_{i, j}$ and $\widetilde{K}=\left[k\left(x_{i}, \bar{x}_{j}\right)\right]_{i, j}$. Bayes rule gives

$$
\begin{aligned}
& p(\bar{y} \mid y)=\frac{p(\bar{y}, y)}{\int p(\bar{y}, y) d \bar{y} d y} \\
& =\exp \left(-\frac{1}{2}\left[\begin{array}{ll}
y^{T} & \bar{y}^{T}
\end{array}\right]\left[\begin{array}{cc}
K+\sigma^{2} I_{N} & \widetilde{K} \\
\widetilde{K}^{T} & \bar{K}
\end{array}\right]^{-1}\left[\begin{array}{l}
y \\
\bar{y}
\end{array}\right]+C(y)\right)
\end{aligned}
$$

A Schur complement block matrix inverse formula gives

$$
\begin{aligned}
{\left[\begin{array}{cc}
K+\sigma^{2} I_{N} & \widetilde{K} \\
\widetilde{K}^{T} & \bar{K}
\end{array}\right]^{-1}=} & {\left[\begin{array}{cc}
I_{N} & -\left(K+\sigma^{2} I_{N}\right)^{-1} \widetilde{K} \\
0 & I_{m}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
\left(K+\sigma^{2} I_{N}\right)^{-1} \\
0 & \left(\bar{K}-\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} \widetilde{K}\right)^{-1}
\end{array}\right] \\
& \times\left[\begin{array}{cc}
I_{N} & 0 \\
-\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} & I_{m}
\end{array}\right]
\end{aligned}
$$

Then, all of the terms involving \bar{y} can be collected into a quadratic form of the vector $\bar{y}-\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} y$ on the matrix $\left(\bar{K}-\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} \widetilde{K}\right)^{-1}$. Thus the posterior distribution of \bar{y} is

$$
\bar{y} \mid y \sim \mathcal{N}\left(\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} y, \bar{K}-\widetilde{K}^{T}\left(K+\sigma^{2} I_{N}\right)^{-1} \widetilde{K}\right)
$$

Considering a single point $x_{0} \in X$, the posterior distribution of $Z\left(x_{0}\right)$ is normal with mean

$$
\mathbf{E}\left[Z\left(x_{0}\right) \mid y\right]=\sum_{i=1}^{N} a_{i} k\left(x_{0}, x_{i}\right)
$$

where $a=\left(K+\sigma^{2} I_{N}\right)^{-1} y$. This is precisely the RKHS regression estimate with kernel k and regularization parameter $\alpha=\sigma^{2}$! One can quickly check that the variance of $Z\left(x_{0}\right)$ given y is

$$
\operatorname{var}\left(Z\left(x_{0}\right) \mid y\right)=k\left(x_{0}, x_{0}\right)-\sum_{i=1}^{N} k\left(x_{0}, x_{i}\right) u_{i}\left(x_{0}\right)
$$

Note that this we have seem this exact expression before in Section 4.1!

5.4. Karhunen-Loève decomposition

The following famous theorem describes how the Gaussian process can be decomposed according to Mercer's theorem:

Theorem 5.3 (Karhunen-Loève). Let Z be the Gaussian process on X with covariance function k. Let $T=\sum_{i=1}^{N} \lambda_{i} f_{i} \otimes f_{i}$ be the eigenvalue decomposition of the integral operator corresponding to k. Then, we can write

$$
Z(x)=\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} Z_{i} f_{i}(x)
$$

where the Z_{i} 's are i.i.d. standard normal random variables, and the convergence is in mean square, uniformly in x.

Proof. Let

$$
Z_{i}=\frac{1}{\sqrt{\lambda_{i}}}\left\langle Z, f_{i}\right\rangle_{L_{2}}=\frac{1}{\sqrt{\lambda_{i}}} \int_{X} Z(x) f_{i}(x) d x
$$

Each Z_{i} is Gaussian, as an integral (i.e., a limit of finite sums) of a Gaussian process. Furthermore,

$$
\begin{aligned}
\mathbf{E} Z_{i} Z_{j} & =\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}} \mathbf{E} \int_{X \times X} Z(x) f_{i}(x) Z(y) f_{j}(y) d x d y \\
& =\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}} \int_{X \times X} \mathbf{E} Z(x) Z(y) f_{i}(x) f_{j}(y) d x d y \\
& =\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}} \int_{X \times X} k(x, y) f_{i}(x) f_{j}(y) d x d y \\
& =\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}}\left\langle T^{1 / 2} f_{i}, T^{1 / 2} f_{j}\right\rangle_{L_{2}} \\
& = \begin{cases}1 & \text { if } i=j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Therefore, each $Z_{i} \sim \mathcal{N}(0,1)$, and, being jointly Gaussian random variables that are uncorrelated, they are independent.

To show convergence, note first that, for $x \in X$,

$$
\begin{aligned}
\mathbf{E} Z(x) Z_{i} & =\frac{1}{\sqrt{\lambda_{i}}} \mathbf{E} Z(x) \int_{X} Z(y) f_{i}(y) d y \\
& =\frac{1}{\sqrt{\lambda_{i}}} \int_{X} \mathbf{E} Z(x) Z(y) f_{i}(y) d y \\
& =\frac{1}{\sqrt{\lambda_{i}}} \int_{X} k(x, y) f_{i}(y) d y \\
& =\sqrt{\lambda_{i}} f_{i}(x)
\end{aligned}
$$

Then, for $N \geq 1$ and $x \in X$,

$$
\begin{aligned}
\mathbf{E}\left(Z(x)-\sum_{i=1}^{N} \sqrt{\lambda_{i}} Z_{i} f_{i}(x)\right)^{2}= & \mathbf{E} Z^{2}(x)+\sum_{i=1}^{N} \lambda_{i} f_{i}^{2}(x) \mathbf{E} Z_{i}^{2} \\
& -2 \sum_{i=1}^{N} \sqrt{\lambda_{i}} f_{i}(x) \mathbf{E} Z(x) Z_{i} \\
= & k(x, x)-\sum_{i=1}^{N} \lambda_{i} f_{i}^{2}(x)
\end{aligned}
$$

which, by Mercer's theorem, converges to zero uniformly in x as $N \rightarrow \infty$.

Note that the KL theorem implies that the RKHS norm of the canonical Gaussian process associated with K is infinite! An exploration of the connections (including this interesting paradox) between Gaussian processes and the RKHS of their kernels fact can be found in [5].

References

[1] H. Wendland, Scattered Data Approximation. Cambridge, 2005.
[2] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups. Springer, 1984.
[3] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press, 2006.
[4] N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, pp. 337-404, 1950.
[5] A. van der Vaart and J. H. van Zanten, "Reproducing kernel Hilbert spaces of Gaussian priors," in Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, ser. Collections, vol. 3, Institute of Mathematical Statistics, 2008, pp. 200-222.
[6] J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus. Springer, 2016.

[^0]: ${ }^{1}$ The complex-valued case is also very useful, but for simplicity we skip it; the biggest difficulty is keeping track of complex conjugates and the ordering of the arguments of k.

[^1]: ${ }^{2}$ Essentially, this lets us consider infinite linear combinations of shifted kernel functions.

