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Setup: feature maps for linear regression

Linear regression model with feature map ¢(x) = (¢1(x), ..., p4(x)):
FOB) = (#00.8) = 2> Pede()
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Suppose f*(x) = f(x, "), and we observe y; = f*(x;) + & for i =1,...,n. In matrix form,
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Standard ridge regression estimate with regularization a = O:

B=(aly+AA)TAY = A+ AA)y

Gram matrix



Noise requires regularization—right?

y=AB +¢
nxd
B = AT (ol + AA)(AB"+6)
If =0 and A has full row rank (requires d > n), f(:,B) will interpolate the samples

AB = AA(AA) Ty =y
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Overparametrization can make interpolation less harmful

Many recent papers show that in certain settings, interpolating noise isn't too bad
» Arose in deep learning studies
» For simplicity, most theoretical results study linear models

Why does this occur? (in linear settings)



Our new framework

Split the features into two groups (truncation and residual):

B0) = (0. 3500 $p010). - 4a0). A=[cAy  Ag]

$1i(x) $R(x) nxp. nx(d—p)

Then the data Gram matrix is

AA = ApAy + Ardp



Overparametrization => implicit regularization

Gram matrix decomposition: AA" = ApyAy + ArAg

> If d — p > n, we can have ApAg ~ al, (a > 0)
> = BrA(al, + AuA) Ty
> (Approximately) ridge regression with positive regularization!

> Previous work assumes independent features (or other very restrictive assumptions)
» Only requires d — p = n

> Not very realistic: kernel/RKHS regression, Fourier features, etc.

» Our work: for merely uncorrelated features, d — p = n? is enough



Example (Fourier basis)
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Extension to classification

> Now y is a label in {—1,1}. Let

ff)=Ely|x]=2P[y=1|x]=1 §=y—f(x

> Classifier: estimate 3 as before from samples (x{, ¥), .., (X, ¥,) and set

J(x) = sign(f(x. B))



Binary labels example
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Finer analysis for classification

J(x) = sign(f(x, w))

> Classification is easier than regression since we only need the sign!

» 3 regimes where regression error is large but classification risk is small
» Again, we show this in much more general settings than before
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