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Setup: feature maps for linear regression

Linear regression model with feature map 𝜙(𝑥) = (𝜙1(𝑥), … , 𝜙𝑑(𝑥)):

𝑓(𝑥, 𝛽) = ⟨𝜙(𝑥), 𝛽⟩ = ∑
ℓ

𝛽ℓ𝜙ℓ(𝑥)

Suppose 𝑓∗(𝑥) = 𝑓(𝑥, 𝛽 ∗), and we observe 𝑦𝑖 = 𝑓∗(𝑥𝑖) + 𝜉𝑖 for 𝑖 = 1, … , 𝑛. In matrix form,
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Standard ridge regression estimate with regularization 𝛼 ≥ 0:

𝛽 = (𝛼𝐼𝑑 + 𝒜∗𝒜)−1𝒜∗𝑦 = 𝒜∗(𝛼𝐼𝑛 + 𝒜𝒜∗⏟
Gram matrix

)−1𝑦



Noise requires regularization—right?

𝑦 = 𝒜⏟
𝑛×𝑑

𝛽 ∗ + 𝜉

𝛽 = 𝒜𝑇(𝛼𝐼𝑛 + 𝒜𝒜𝑇)−1(𝒜𝛽 ∗ + 𝜉)

If 𝛼 = 0 and 𝒜 has full row rank (requires 𝑑 ≥ 𝑛), 𝑓(⋅, 𝛽) will interpolate the samples

𝒜𝛽 = 𝒜𝒜∗(𝒜𝒜∗)−1𝑦 = 𝑦
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Overparametrization can make interpolation less harmful

Many recent papers show that in certain settings, interpolating noise isn’t too bad

▶ Arose in deep learning studies

▶ For simplicity, most theoretical results study linear models

Why does this occur? (in linear settings)



Our new framework

Split the features into two groups (truncation and residual):

𝜙(𝑥) = (𝜙1(𝑥), … , 𝜙𝑝(𝑥)⏟⏟⏟⏟⏟
𝜙𝐻(𝑥)

, 𝜙𝑝+1(𝑥), … , 𝜙𝑑(𝑥)⏟⏟⏟⏟⏟⏟⏟
𝜙𝑅(𝑥)

), 𝒜 = [𝒜𝐻⏟
𝑛×𝑝

𝒜𝑅⏟
𝑛×(𝑑−𝑝)

]

Then the data Gram matrix is

𝒜𝒜∗ = 𝒜𝐻𝒜∗
𝐻 + 𝒜𝑅𝒜∗

𝑅



Overparametrization ⟹ implicit regularization

Gram matrix decomposition: 𝒜𝒜∗ = 𝒜𝐻𝒜∗
𝐻 + 𝒜𝑅𝒜∗

𝑅

▶ If 𝑑 − 𝑝 ≫ 𝑛, we can have 𝒜𝑅𝒜∗
𝑅 ≈ 𝛼̄𝐼𝑛 (𝛼̄ > 0)!

▶ ⟹ 𝛽 ≈ 𝒜∗(𝛼̄𝐼𝑛 + 𝒜𝐻𝒜∗
𝐻)−1𝑦.

▶ (Approximately) ridge regression with positive regularization!

▶ Previous work assumes independent features (or other very restrictive assumptions)

▶ Only requires 𝑑 − 𝑝 ≳ 𝑛
▶ Not very realistic: kernel/RKHS regression, Fourier features, etc.

▶ Our work: for merely uncorrelated features, 𝑑 − 𝑝 ≳ 𝑛2 is enough



Example (Fourier basis)
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Extension to classification

▶ Now 𝑦 is a label in {−1, 1}. Let

𝑓∗(𝑥) = E[𝑦 | 𝑥] = 2 𝑷[𝑦 = 1 | 𝑥] − 1, 𝜉 = 𝑦 − 𝑓∗(𝑥)

▶ Classifier: estimate 𝛽 as before from samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) and set

𝑦̂(𝑥) = sign(𝑓(𝑥, 𝛽))



Binary labels example
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Finer analysis for classification

𝑦̂(𝑥) = sign(𝑓(𝑥, 𝑤̂))

▶ Classification is easier than regression since we only need the sign!

▶ ∃ regimes where regression error is large but classification risk is small

▶ Again, we show this in much more general settings than before



Large regression but small classification error
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