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Motivation: the interpolation phenomenon
Classically, allowing machine learning models to

interpolate noisy data is a bad idea.

Empirically, in highly overparametrized settings, it

still works reasonably well.

▶ Arose in deep learning studies

▶ For simplicity, most theoretical results study

linear models

Why does this occur?
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Setup: linear regression with feature maps and kernels

Linear regression model with feature map 𝜙(𝑥) = (𝜙1(𝑥), … , 𝜙𝑑(𝑥)):

𝑓(𝑥, 𝛽) = ⟨𝜙(𝑥), 𝛽⟩ = ∑
ℓ

𝛽ℓ𝜙ℓ(𝑥)

Suppose 𝑓∗(𝑥) = 𝑓(𝑥, 𝛽 ∗) and 𝑦𝑖 = 𝑓∗(𝑥𝑖) + 𝜉𝑖 for 𝑖 = 1, … , 𝑛. In matrix form,

⎡
⎢
⎣

𝑦1
⋮

𝑦𝑛

⎤
⎥
⎦⏟

𝑦

=
⎡
⎢
⎣

𝜙1(𝑥1) ⋯ 𝜙𝑑(𝑥1)
⋮ ⋱ ⋮

𝜙1(𝑥𝑛) ⋯ 𝜙𝑑(𝑥𝑛)

⎤
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒜 (𝑛 × 𝑑 matrix)

𝛽 ∗ +
⎡
⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤
⎥
⎦⏟

𝜉
Standard ridge regression estimate with regularization 𝛼 ≥ 0:

𝛽 = (𝛼𝐼𝑑 + 𝒜∗𝒜)−1𝒜∗𝑦 = 𝒜∗(𝛼𝐼𝑛 + 𝒜𝒜∗⏟
Gram matrix

)−1𝑦

If 𝛼 = 0 and 𝒜𝒜∗ has full rank, 𝒜𝛽 = 𝑦 (interpolation)

Our analysis via truncation

Split the features into two groups (truncation and residual):

𝜙(𝑥) = (𝜙1(𝑥), … , 𝜙𝑝(𝑥)⏟⏟⏟⏟⏟
𝜙𝐻(𝑥)

, 𝜙𝑝+1(𝑥), … , 𝜙𝑑(𝑥)⏟⏟⏟⏟⏟⏟⏟
𝜙𝑅(𝑥)

), 𝒜 = [𝒜𝐻⏟
𝑛×𝑝

𝒜𝑅⏟
𝑛×(𝑑−𝑝)

]

Then the data Gram matrix is

𝒜𝒜∗ = 𝒜𝐻𝒜∗
𝐻 + 𝒜𝑅𝒜∗

𝑅

Key idea: if 𝑑 − 𝑝 ≫ 𝑛, we can have 𝒜𝑅𝒜∗
𝑅 ≈ �̄�𝐼𝑛 (for some �̄� > 0)

▶ Then 𝛽 ≈ 𝒜∗(�̄�𝐼𝑛 + 𝒜𝐻𝒜∗
𝐻)−1𝑦

▶ (Approximately) ridge regression with positive regularization!

Sampling model and main result

If 𝑥 is random with some distribution 𝜇, the feature covariance is

Σ = E𝑥[𝜙𝑖(𝑥)𝜙𝑗(𝑥)]𝑖𝑗 =
⎡
⎢
⎣

𝜆1
⋱

𝜆𝑑

⎤
⎥
⎦

▶ We have assumed the features are uncorrelated
▶ Decreasing order: 𝜆1 ≥ 𝜆2 ≥ …
▶ ‖𝑓(⋅, 𝛽)‖𝐿2

= ‖Σ1/2𝛽‖ℓ2
Suppose the sample locations 𝑥1, … , 𝑥𝑛 are i.i.d. random according to 𝜇, and the

noise is independent and zero-mean with variance 𝜎2.
Condition 1: 𝑛 is large enough that empirical ≈ actual 𝐿2 norm on span{𝜙1, … , 𝜙𝑝}
▶ Standard approximate isometry

Condition 2: ℛℛ∗ ≈ �̄�𝐼𝑛, where �̄� = ∑ℓ>𝑝 𝜆ℓ
▶ Previous work proved this with independent features:
▶ Our contribution: this holds generally for large enough 𝑑

Theorem

Suppose conditions 1 and 2 hold and (for simplicity) 𝑓∗ ∈ span{𝜙1, … , 𝜙𝑝}. Then

E‖𝑓 − 𝑓∗‖2
𝐿2

≲ √
𝛼
𝑛‖𝑓∗‖ℋ + 𝜎2(

𝑝
𝑛 +

𝑛 ∑ℓ>𝑝 𝜆2
ℓ

(∑ℓ>𝑝 𝜆ℓ)
2).

Extension to classification

Now 𝑦 is a label in {−1, 1}. Let

𝑓∗(𝑥) = E[𝑦 | 𝑥] = 2 𝑷[𝑦 = 1 | 𝑥] − 1, 𝜉 = 𝑦 − 𝑓∗(𝑥)

Classifier: estimate 𝛽 as before from samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) and set

�̂�(𝑥) = sign(𝑓(𝑥, 𝛽))

Classification is easier than regression since we only need the sign!

▶ ∃ regimes where regression error is large but classification risk is small

▶ Previous work assumes Gaussian features

Idea: if 𝑓 = 𝑠𝑓∗ + residual, 𝑓 (mostly) has the same sign as 𝑓∗ if residual is ≪ 𝑠,
even if 𝑠 ≪ 1.
▶ Good regression performance requires 𝑠 = 1 and small residual.
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Good regression and classification
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Poor regression but good classification

Key takeaways

▶ General linear algebra framework for interpolation phenomenon

▶ Show interpolation happens in quite general settings

▶ Show separation between regression and classification in general settings
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