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A problem in signal processing/statistics: phase retrieval
Generalized linear model: for unknown x, € €7, suppose we observe
yi & [apx)|e i=1..n,

where ay,...,a, € C? are known measurement vectors.

Recovery problem: estimate x,

Motivation: optical imaging

» Electromagnetic field (complex amplitude) is often linear...

» However, measured light intensity is the (squared) magnitude



Least-squares estimation

We observe

Vi~ |(al~,x*)]2, ay,...,a, € C" known, x, € €' unknown

How do we efficiently compute as estimate of x,?
» (3 vast literature)

Least-squares estimator of x,:

n
. 2 2
min > ({a; x)[> = y)
xeCd i=1

Nonconvex: could have bad local minima

» How can we overcome this?



Challenges of nonconvexity

Convex Nonconvex

In general, nonconvex optimization problems can have (many) spurious local minima
» May be impossible to solve without exhaustive search

» Intractable in high dimensions

» Can we do better in some cases?



What is the phase retrieval “landscape”?

Real case, d = 2: if x, = (1,0), and a ~ N(O, /),

E(a )1 = [ax.)I)? = E(af — (4 +xpa5)%)?
= 3(x12 —1)% + 6x12x% + 3xg - 2X%

nly local minima are =£x
» Only local +x,

» Landscape also "benign” in higher

dimensions/complex case.

Theorem (Cai et al., 2023)

If the measurement vectors aj, ...,a, are i.id. Goussian in ¢ and n = dlogd, then, with
high probability, every second-order critical point x of

> (ai )* = Kapx,)1%)?

min
XEcd i=1

satisfles x = sx, for some s € C,|s| = 1.



Limitation: strong assumptions
Theorem (Cai et al., 2023)
If the measurement vectors aj, ...,a, are i.i.d. Gaussian, and n 2 dlogd...

» Gaussian measurements are unrealistic for applications
» Requirement n = dlogd is statistically suboptimal

For “harder” problem instances, nonconvex landscape is not benign in generall
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Matrix sensing approach

We observe
y; A |(a,-,x*)|2 = (a;a;, x,.x}), ("lifting” trick)
linear in x,x;
We can then use the techniques of (linear) low-rank matrix sensing
> x,x; is a rank-1 positive semidefinite matrix
“Lifted” matrix estimator (A; = a;a;):
n

. 2
Ené% 1((A,-,Z) —y;)° s.t. rank(Z) =1

One approach: drop rank constraint to get convex semidefinite program (“PhaseLift")
> State-of-the-art for algorithms with theoretical guarantees

> Computationally expensive (~ d? variables)



Relaxation
To try to improve the landscape, we relax the rank constraint
n n
min ;((A,nz) —y)? st akZ)<p < min ;((Ai,xx*) - )?

P> Motivated by existing work in matrix sensing and synchronization

» p=d<«— SDP
Theoretically, not obvious this helps!

» In general, such “overparametrization” can introduce spurious local optimal

Empirically, seems promising:
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Some theoretical guarantees
Relaxed nonconvex estimator (A; = a;a;}):

n
For y; = (A, x.x.) + &, solve min Z((Ai’ XX*) — yl.)2 (BM-p)
Xecdxp 5

Theorem (McRae, 2025b, representative)

dlogd
If ay,...,a, are i.id. Gaussian random vectors,' as long as n >d and p =1+ 92 with
n

high probability, every second-order critical point of (BM-p) satisfies

1 n
- Z §iA;
i=

”XX* - X*X:“* <

2]

» p only needs to be at most & logd K d
» Without noise, X = x,v" for some v € CP, ||v|| =1

» In some cases, first statistically optimal result without needing to solve an SDP

'Can be extended to isotropic sub-Gaussian with some additional assumptions for identifiability.



What about tightness?

We were solving
n
i AL ZY —y)? st rank(Z) < p.
min ;((z )= ¥)? st rank(Z) < p

But we want a rank-1 Z = xx* for some x € C%.
» Without noise, Z = X X" = x,x}, so tight
» With noise, in general rank(X) > 1 so not tight...

» However, the error bound on [[XX™ — x,x}||, combined with eigenvector perturbation

bounds ensures that the best rank-1 approximation to X still gives a good statistical
estimator



Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). "Optimal
convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer”. In: [EEE
Trans. Inf. Theory 69.3, pp. 1866—1882

» Promising empirical results with estimator of the form

n

min Z((Ai,XX*) —¥)? +6(X) <«— penalty based on £ norm

Xechxp i

» Difficulty: every version of this | can think of with an £; norm has spurious local optima
due to nonsmoothness

» Questions:

» Why does it work so well empirically?
» Is there a formulation more amenable to theory?



Example problem 2: graph clustering

» Graph G=(V,E), V={1,....n}

> We want to label the vertices in a way that corresponds to the edge information



Signed graph clustering

For simplicity, consider signed graph clustering
» (Unsigned clustering also works with some tweaks)

There is some (unknown) ground-truth labeling z;,...,z, € {£1}, and for each edge, we

observe (approximately) the relative sign of its vertices:
Rij 72, for (G, ))eE

Estimate of clusters is
arg max Z R;jxix
x€{£1}* (i j)eE
=(C,xxT)



A discrete problem

We end up with a combinatorial optimization problem

max {(C, xxT)
xe{£1}"?

Has similar structure to NP-hard max-cut problem
» But graph clustering is not (always) NP-hard, so maybe we can do better
» Q: What is a good algorithm (other than brute-force search)?



Continuous relaxation

We are maximizing
T
(C,XX ) = ZCUXZX./
Lj
We can make this continuous and smooth by relaxing

XX, Xy Xy € {£1}

[

(i x;) X xn ERP x|l =1,p =2
In matrix notation

max C,XXT s.t. diag(XXT) =1
oax o ) 9(XXx")

Smooth but nonconvex




More general problem: orthogonal group synchronization on graph

» Graph G = (V, E) with vertices V ={1,..., n}

» Each node i has associated r X r orthogonal matrix Z; (ZiZI-T =)
> Observed data: R;; ~ Z,Z] for (i,j) € E

» Goal: estimate Zy,...,Z,

>

Many applications in robotics, computer vision, signal processing...



General optimization problem

Setup:
» Graph G = (V, E) with vertices V = {1,...,n}
» Want to estimate r X r orthogonal matrices Z;,...,Z,

> Observed data: R;; ~ Zl-ZjT for (i, j) € E

Estimator:

or

T T _ | i—
Y.emIg’XX’ . E (Rl-j,Yin ) st. YY) =1,i=1..,n
i (i,j)eE
s.t. blkdiag(YYT) =1
n

max (C, YYT)
n diag. rxr blks

YeRl’fo

Relaxed version (orthogonal group — Stiefel manifold): for p >r,

max (C,YYT) st. blkdiag(YYT) =1,

YeanXp



A landscape guarantee (noiseless case)

Theorem (McRae and Boumal, 2024)
Suppose
» Measurement graph G is connected
T .
> We observe exactly R;; = Z,Z; € R™ (i,j) €E
» p>r+2, and we solve

Then every second-order critical point Y of

T : Ty _ _ .
Yen;?nxxp (C,YY") s.t. blkdiag(YY"') =1, Cl-j = R,-j for (i, j) € E
Z
satisfies yyT = ZZT, where Z =
Z

n
» No dependence on the graph other than that it is connected.
» Condition on p is optimal (Markdahl, 2021)



Why p = r+ 27

Simple problem instance:? r =1, y==z,=1

max ZAU(YI"YJ) st [Vl =1i=1..,n A is a graph adjacency matrix
L

YERNXpP
Global optima are Y} = --- =Y, ("synchronized states")
p=1 p=2 p=3
discrete spurious local optimum no spurious optima

This is related to the topological notion of simple connectedness (Markdahl, 2021)
» Stiefel manifold St(p,r) simply connected <= p =>r+ 2

2This is also known as Kuramoto oscillator synchronization, an important problem in dynamical systems.



Tightness

When can we ensure that a solution/local optimum to

C.YYTy st blkdiag(YYT) =1
yhax ¢ ) s ag(YY") =l

has rank exactly r?
» As with phase retrieval, noiseless — exact recovery — tight

» Extension of result gives tightness with (some) noise if p > r 4+ 2 (strict inequality)
» Stronger results possible with more assumptions (Ling, 2025)

» Especially in the simplest case r =1 (McRae, Abdalla, et al., 2025; Rakoto Endor and
Waldspurger, 2024; McRae, 2025a)

Tightness with noise possible when the SDP relaxation is tight and has strict complementarity
» Dual certificate matrix has rank exactly (n —1)r

» Quantitatively, depends on spectral properties of the graph



Conclusions

» Nonconvex optimization problems arising in practical applications can

be surprisingly tractable to solve
> My recent work: theoretical guarantees of benign landscape
» Mild relaxation (adding variables) can help
Examples presented
> Phase retrieval
» Clustering/synchronization problems
What's next?
» Many questions on these topics and more general low-rank matrix
optimization

» What interesting statistics/optimization problems are you working on?




Thanks!
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