Nonconvex optimization landscapes in statistics: benignness, relaxation, and tightness

Andrew D. McRae

November 13, 2025

A problem in signal processing/statistics: phase retrieval

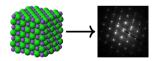
Generalized linear model: for unknown $x_* \in \mathbf{C}^d$, suppose we observe

$$y_i \approx |\langle a_i, x_* \rangle|^2, i = 1, ..., n,$$

where $a_1,\ldots,a_n\in\mathbf{C}^d$ are known measurement vectors.

Recovery problem: estimate x_*

Motivation: optical imaging



- ► Electromagnetic field (complex amplitude) is often linear...
- ▶ However, measured light intensity is the (squared) magnitude

Least-squares estimation

We observe

$$y_i \approx |\langle a_i, x_* \rangle|^2$$
, $a_1, \dots, a_n \in \mathbf{C}^n$ known, $x_* \in \mathbf{C}^n$ unknown

How do we efficiently **compute** as estimate of x_* ?

► (∃ vast literature)

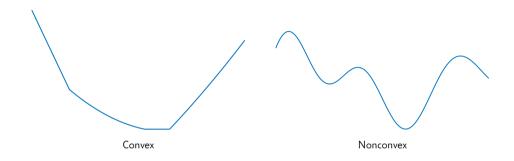
Least-squares estimator of x_* :

$$\min_{\mathbf{x} \in \mathbf{C}^d} \sum_{i=1}^n (|\langle a_i, \mathbf{x} \rangle|^2 - y_i)^2$$

Nonconvex: could have bad local minima

► How can we overcome this?

Challenges of nonconvexity



In general, nonconvex optimization problems can have (many) spurious local minima

- ▶ May be impossible to solve without exhaustive search
 - ► Intractable in high dimensions
- ► Can we do better in some cases?

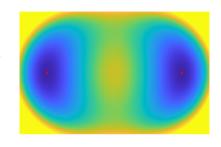
What is the phase retrieval "landscape"?

Real case,
$$d = 2$$
: if $x_* = (1,0)$, and $a \sim \mathcal{N}(0, I_2)$,

$$\mathbf{E}(|\langle a, x \rangle|^2 - |\langle a, x_* \rangle|^2)^2 = \mathbf{E}(a_1^2 - (x_1 a_1 + x_2 a_2)^2)^2$$

$$= 3(x_1^2 - 1)^2 + 6x_1^2 x_2^2 + 3x_2^4 - 2x_2^2$$

- ► Only local minima are ±x_{*}
- Landscape also "benign" in higher dimensions/complex case.



Theorem (Cai et al., 2023)

If the measurement vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ are i.i.d. Gaussian in \mathbf{C}^d , and $n \gtrsim d \log d$, then, with high probability, every second-order critical point x of

$$\min_{\mathbf{x} \in \mathbf{C}^d} \sum_{i=1}^n (|\langle a_i, \mathbf{x} \rangle|^2 - |\langle a_i, \mathbf{x}_* \rangle|^2)^2$$

satisfies $x = sx_*$ for some $s \in \mathbf{C}$, |s| = 1.

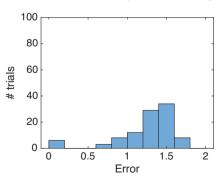
Limitation: strong assumptions

Theorem (Cai et al., 2023)

If the measurement vectors a_1, \ldots, a_n are i.i.d. **Gaussian**, and $n \gtrsim d \log d \ldots$

- ► Gaussian measurements are unrealistic for applications
- ▶ Requirement $n \gtrsim d \log d$ is statistically suboptimal

For "harder" problem instances, nonconvex landscape is **not benign** in general!



Matrix sensing approach

We observe

$$y_i \approx |\langle a_i, x_* \rangle|^2 = \langle a_i a_i^*, x_* x_*^* \rangle$$
, ("lifting" trick)

We can then use the techniques of (linear) low-rank matrix sensing

 $ightharpoonup x_* x_*^*$ is a rank-1 positive semidefinite matrix

"Lifted" matrix estimator $(A_i = a_i a_i^*)$:

$$\min_{Z \succeq 0} \sum_{i=1}^{n} (\langle A_i, Z \rangle - y_i)^2 \text{ s.t. } rank(Z) = 1$$

One approach: drop rank constraint to get convex semidefinite program ("PhaseLift")

- ► State-of-the-art for algorithms with theoretical guarantees
- ► Computationally expensive ($\approx d^2$ variables)

Relaxation

To try to improve the landscape, we relax the rank constraint

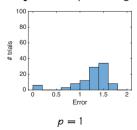
$$\min_{Z\succeq 0} \ \sum_{i=1}^n (\langle A_i,Z\rangle - y_i)^2 \text{ s.t. } \operatorname{rank}(Z) \leq \mathbf{p} \quad \Longleftrightarrow \quad \min_{X\in \mathbf{C}^{d\times p}} \ \sum_{i=1}^n (\langle A_i,XX^*\rangle - y_i)^2$$

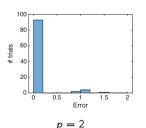
- Motivated by existing work in matrix sensing and synchronization
- $p = d \longleftrightarrow SDP$

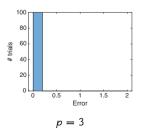
Theoretically, not obvious this helps!

In general, such "overparametrization" can introduce spurious local optimal

Empirically, seems promising:







Some theoretical guarantees

Relaxed nonconvex estimator $(A_i = a_i a_i^*)$:

For
$$y_i = \langle A_i, x_* x_*^* \rangle + \xi_i$$
, solve
$$\min_{X \in \mathbf{C}^{d \times p}} \sum_{i=1}^n (\langle A_i, XX^* \rangle - y_i)^2$$
 (BM- p)

Theorem (McRae, 2025b, representative)

If a_1, \ldots, a_n are i.i.d. Gaussian random vectors, 1 as long as $n \gtrsim d$ and $p \gtrsim 1 + \frac{d \log d}{n}$, with high probability, every second-order critical point of (BM-p) satisfies

$$\|XX^* - x_*x_*^*\|_* \lesssim \left\|\frac{1}{n}\sum_{i=1}^n \xi_i A_i\right\|_{\ell_2}$$

- ▶ p only needs to be at most $\approx \log d \ll d$
- ▶ Without noise, $X = x_* v^*$ for some $v \in \mathbf{C}^p$, ||v|| = 1
- In some cases, first statistically optimal result without needing to solve an SDP

¹Can be extended to isotropic sub-Gaussian with some additional assumptions for identifiability.

What about tightness?

We were solving

$$\min_{Z\succeq 0} \sum_{i=1}^{n} (\langle A_i, Z \rangle - y_i)^2 \text{ s.t. } \operatorname{rank}(Z) \leq p.$$

But we want a rank-1 $Z = xx^*$ for some $x \in \mathbf{C}^d$.

- ▶ Without noise, $Z = XX^* = x_*x_*^*$, so tight
- ▶ With noise, in general rank(X) > 1 so not tight...
- ▶ However, the error bound on $\|XX^* x_*x_*^*\|_*$ combined with eigenvector perturbation bounds ensures that the **best rank-1** approximation to X still gives a good statistical estimator

Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). "Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer". In: *IEEE Trans. Inf. Theory* 69.3, pp. 1866–1882

Promising empirical results with estimator of the form

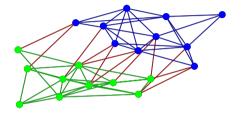
$$\min_{X \in \mathbf{C}^{d \times p}} \sum_{i=1}^{n} (\langle A_i, XX^* \rangle - y_i)^2 + \theta(X) \quad \longleftarrow \quad \text{penalty based on } \ell_1 \text{ norm}$$

ightharpoonup Difficulty: every version of this I can think of with an ℓ_1 norm has spurious local optima due to nonsmoothness

Questions:

- Why does it work so well empirically?
- Is there a formulation more amenable to theory?

Example problem 2: graph clustering



- ▶ Graph $G = (V, E), V = \{1, ..., n\}$
- ▶ We want to label the vertices in a way that corresponds to the edge information

Signed graph clustering

For simplicity, consider signed graph clustering

(Unsigned clustering also works with some tweaks)

There is some (unknown) ground-truth labeling $z_1, \dots, z_n \in \{\pm 1\}$, and for each edge, we observe (approximately) the relative sign of its vertices:

$$R_{ij} \approx z_i z_j$$
 for $(i, j) \in E$

Estimate of clusters is

$$\underset{x \in \{\pm 1\}^n}{\text{arg max}} \quad \underbrace{\sum_{(i,j) \in E} R_{ij} x_i x_j}_{= \langle C, xx^T \rangle}$$

A discrete problem

We end up with a combinatorial optimization problem

$$\max_{x \in \{\pm 1\}^n} \langle C, xx^T \rangle$$

Has similar structure to NP-hard max-cut problem

- ▶ But graph clustering is not (always) NP-hard, so maybe we can do better
- ▶ **Q:** What is a good algorithm (other than brute-force search)?

Continuous relaxation

We are maximizing

$$\langle C, xx^T \rangle = \sum_{i,j} C_{ij} x_i x_j.$$

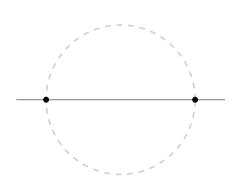
We can make this continuous and smooth by relaxing

$$\begin{aligned} x_i x_j, & x_1, \dots, x_n \in \{\pm 1\} \\ & \downarrow \\ & \langle x_i, x_j \rangle, & x_1, \dots, x_n \in \mathbf{R}^p, \|x_i\| = 1, p \ge 2 \end{aligned}$$

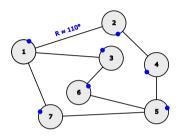
In matrix notation

$$\max_{X \in \mathbf{R}^{n \times p}} \langle C, XX^T \rangle \text{ s.t. } \operatorname{diag}(XX^T) = \mathbf{1}$$

Smooth but **nonconvex**



More general problem: orthogonal group synchronization on graph



- ▶ Graph G = (V, E) with vertices $V = \{1, ..., n\}$
- Each node i has associated $r \times r$ orthogonal matrix Z_i $(Z_i Z_i^T = I_r)$
- ▶ Observed data: $R_{ij} \approx Z_i Z_j^T$ for $(i, j) \in E$
- ▶ Goal: estimate $Z_1, ..., Z_n$
- ▶ Many applications in robotics, computer vision, signal processing...

General optimization problem

Setup:

- ▶ Graph G = (V, E) with vertices $V = \{1, ..., n\}$
- ▶ Want to estimate $r \times r$ orthogonal matrices $Z_1, ..., Z_n$
- ▶ Observed data: $R_{ij} \approx Z_i Z_j^T$ for $(i, j) \in E$

Estimator:

$$\max_{Y_i \in \mathbf{R}^{r \times r}} \sum_{(i,j) \in E} \langle R_{ij}, Y_i Y_j^T \rangle$$

s.t.
$$Y_i Y_i^T = I_r, i = 1, ..., n$$
,

$$\max_{Y \in \mathbf{R}^{rn \times r}} \langle C, YY^T \rangle$$

s.t.
$$\underbrace{\text{blkdiag}(YY^T)}_{n \text{ diag. } r \times r \text{ blks}} = I_{rn}$$

Relaxed version (orthogonal group \rightarrow Stiefel manifold): for p > r,

$$\max_{Y \in \mathbf{R}^{rn \times p}} \langle C, YY^T \rangle \text{ s.t. blkdiag}(YY^T) = I_{rn}$$

A landscape guarantee (noiseless case)

Theorem (McRae and Boumal, 2024)

Suppose

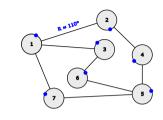
- Meαsurement graph G is connected
- We observe exactly $R_{ij} = Z_i Z_j^T \in \mathbf{R}^{r \times r}$, $(i, j) \in E$
- $ightharpoonup p \ge r + 2$, and we solve

Then every second-order critical point Y of

$$\max_{Y \in \mathbf{R}^{r n \times p}} \langle C, YY^T \rangle \text{ s.t. blkdiag}(YY^T) = I_{rn}, \qquad C_{ij} = R_{ij} \text{ for } (i, j) \in E$$

satisfies
$$YY^T = ZZ^T$$
, where $Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_n \end{bmatrix}$.

- ▶ No dependence on the graph other than that it is connected.
- Condition on p is optimal (Markdahl, 2021)

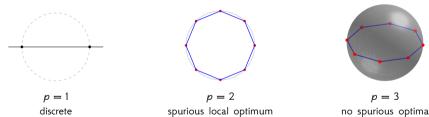


Why $p \ge r + 2$?

Simple problem instance: 2 r = 1, $z_1 = \cdots = z_n = 1$

$$\max_{Y \in \mathbf{R}^{n \times p}} \sum_{i,j} A_{ij} \langle Y_i, Y_j \rangle \text{ s.t. } ||Y_i|| = 1, i = 1, \dots, n, \qquad A \text{ is a graph adjacency matrix}$$

Global optima are $Y_1 = \cdots = Y_n$ ("synchronized states")



This is related to the topological notion of simple connectedness (Markdahl, 2021)

▶ Stiefel manifold St(p,r) simply connected $\iff p \ge r + 2$

²This is also known as Kuramoto oscillator synchronization, an important problem in dynamical systems.

Tightness

When can we ensure that a solution/local optimum to

$$\max_{Y \in \mathbf{R}^{rn \times p}} \langle C, YY^T \rangle \text{ s.t. blkdiag}(YY^T) = I_{rn}$$

has rank exactly r?

- As with phase retrieval, noiseless → exact recovery → tight
- Extension of result gives tightness with (some) noise if p > r + 2 (strict inequality)
- Stronger results possible with more assumptions (Ling, 2025)
 - Especially in the simplest case r = 1 (McRae, Abdalla, et al., 2025; Rakoto Endor and Waldspurger, 2024; McRae, 2025a)

Tightness with noise possible when the SDP relaxation is tight and has strict complementarity

- ▶ Dual certificate matrix has rank exactly (n-1)r
- Quantitatively, depends on spectral properties of the graph

Conclusions

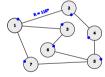
- Nonconvex optimization problems arising in practical applications can be surprisingly tractable to solve
- ▶ My recent work: theoretical guarantees of benign landscape
- ▶ Mild relaxation (adding variables) can help

Examples presented

- Phase retrieval
- Clustering/synchronization problems

What's next?

- Many questions on these topics and more general low-rank matrix optimization
- ▶ What interesting statistics/optimization problems are **you** working on?



Thanks!

References 1

- Cai, Jian-Feng, Meng Huang, Dong Li, and Yang Wang (2023). "Nearly optimal bounds for the global geometric landscape of phase retrieval". In: *Inverse Probl.* 39.7.
- Ling, Shuyang (2025). "Local Geometry Determines Global Landscape in Low-Rank Factorization for Synchronization". In: Found. Comput. Math.
- Markdahl, Johan (2021). "Synchronization on Riemannian Manifolds: Multiply Connected Implies Multistable". In: IEEE Trans. Autom. Control 66.9, pp. 4311–4318.
- McRae, Andrew D. (2025a). "Benign landscapes for synchronization on spheres via normalized Laplacian matrices". In: arXiv: 2503.18801 [math.0C].
- (2025b). "Phase retrieval and matrix sensing via benign and overparametrized nonconvex optimization". In: arXiv: 2505.02636 [math.OC].
 - McRae, Andrew D., Pedro Abdalla, Afonso S. Bandeira, and Nicolas Boumal (2025). "Nonconvex landscapes for \mathbf{Z}_2 synchronization and graph clustering are benign near exact recovery thresholds". In: *Inform. Inference.* 14.2.

References II

- McRae, Andrew D. and Nicolas Boumal (2024). "Benign Landscapes of Low-Dimensional Relaxations for Orthogonal Synchronization on General Graphs". In: *SIAM J. Optim.* 34.2, pp. 1427–1454.
- McRae, Andrew D., Justin Romberg, and Mark A. Davenport (2023). "Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer". In: *IEEE Trαns. Inf. Theory* 69.3, pp. 1866–1882.
- Rakoto Endor, Faniriana and Irène Waldspurger (2024). "Benign landscape for Burer-Monteiro factorizations of MaxCut-type semidefinite programs". In: arXiv: 2411.03103 [math.0C].