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A problem in signal processing/statistics: phase retrieval

Generalized linear model: for unknown 𝑥∗ ∈ C𝑑, suppose we observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2, 𝑖 = 1, … , 𝑛,

where 𝑎1, … , 𝑎𝑛 ∈ C𝑑 are known measurement vectors.

Recovery problem: estimate 𝑥∗

Motivation: optical imaging

▶ Electromagnetic field (complex amplitude) is often linear…

▶ However, measured light intensity is the (squared) magnitude
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Least-squares estimation

We observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2, 𝑎1, … , 𝑎𝑛 ∈ C𝑛 known, 𝑥∗ ∈ C𝑛 unknown

How do we efficiently compute as estimate of 𝑥∗?

▶ (∃ vast literature)

Least-squares estimator of 𝑥∗:

min
𝑥∈C𝑑

𝑛
∑
𝑖=1

(|⟨𝑎𝑖, 𝑥⟩|2 − 𝑦𝑖)2

Nonconvex: could have bad local minima

▶ How can we overcome this?



4/22

Challenges of nonconvexity

Convex Nonconvex

In general, nonconvex optimization problems can have (many) spurious local minima

▶ May be impossible to solve without exhaustive search

▶ Intractable in high dimensions

▶ Can we do better in some cases?
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What is the phase retrieval “landscape”?

Real case, 𝑑 = 2: if 𝑥∗ = (1, 0), and 𝑎 ∼ 𝒩(0, 𝐼2),
E(|⟨𝑎, 𝑥⟩|2 − |⟨𝑎, 𝑥∗⟩|2)2 = E(𝑎2

1 − (𝑥1𝑎1 + 𝑥2𝑎2)2)2

= 3(𝑥2
1 − 1)2 + 6𝑥2

1 𝑥2
2 + 3𝑥4

2 − 2𝑥2
2

▶ Only local minima are ±𝑥∗
▶ Landscape also “benign” in higher

dimensions/complex case.

Theorem (Cai et al., 2023)

If the measurement vectors 𝑎1, … , 𝑎𝑛 are i.i.d. Gaussian in C𝑑, and 𝑛 ≳ 𝑑 log 𝑑, then, with
high probability, every second-order critical point 𝑥 of

min
𝑥∈C𝑑

𝑛
∑
𝑖=1

(|⟨𝑎𝑖, 𝑥⟩|2 − |⟨𝑎𝑖, 𝑥∗⟩|2)2

satisfies 𝑥 = 𝑠𝑥∗ for some 𝑠 ∈ C, |𝑠| = 1.
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Limitation: strong assumptions

Theorem (Cai et al., 2023)

If the measurement vectors 𝑎1, … , 𝑎𝑛 are i.i.d. Gaussian, and 𝑛 ≳ 𝒅 log 𝒅…

▶ Gaussian measurements are unrealistic for applications

▶ Requirement 𝑛 ≳ 𝑑 log 𝑑 is statistically suboptimal

For “harder” problem instances, nonconvex landscape is not benign in general!
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Matrix sensing approach

We observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2 = ⟨𝑎𝑖𝑎∗
𝑖 , 𝑥∗𝑥∗

∗⟩⏟⏟⏟⏟⏟
linear in 𝑥∗𝑥∗

∗

, (“lifting” trick)

We can then use the techniques of (linear) low-rank matrix sensing
▶ 𝑥∗𝑥∗

∗ is a rank-1 positive semidefinite matrix

“Lifted” matrix estimator (𝐴𝑖 = 𝑎𝑖𝑎∗
𝑖 ):

min
𝑍⪰0

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑍⟩ − 𝑦𝑖)2 s.t. rank(𝑍) = 1

One approach: drop rank constraint to get convex semidefinite program (“PhaseLift”)

▶ State-of-the-art for algorithms with theoretical guarantees

▶ Computationally expensive (≈ 𝑑2 variables)
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Relaxation

To try to improve the landscape, we relax the rank constraint

min
𝑍⪰0

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑍⟩ − 𝑦𝑖)2 s.t. rank(𝑍)≤ 𝒑 ⟺ min
𝑋∈C𝑑×𝒑

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑋𝑋 ∗⟩ − 𝑦𝑖)2

▶ Motivated by existing work in matrix sensing and synchronization

▶ 𝑝 = 𝑑 ⟷ SDP

Theoretically, not obvious this helps!
▶ In general, such “overparametrization” can introduce spurious local optima!

Empirically, seems promising:
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Some theoretical guarantees

Relaxed nonconvex estimator (𝐴𝑖 = 𝑎𝑖𝑎∗
𝑖 ):

For 𝑦𝑖 = ⟨𝐴𝑖, 𝑥∗𝑥∗
∗⟩ + 𝜉𝑖, solve min

𝑋∈C𝑑×𝑝

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑋𝑋 ∗⟩ − 𝑦𝑖)2 (BM-𝑝)

Theorem (McRae, 2025b, representative)

If 𝑎1, … , 𝑎𝑛 are i.i.d. Gaussian random vectors,1 as long as 𝑛 ≳ 𝒅 and 𝑝 ≳ 1 + 𝑑 log 𝑑
𝑛

, with
high probability, every second-order critical point of (BM-𝑝) satisfies

‖𝑋𝑋 ∗ − 𝑥∗𝑥∗
∗‖∗ ≲ ∥

1
𝑛

𝑛
∑
𝑖=1

𝜉𝑖𝐴𝑖∥
ℓ2

▶ 𝑝 only needs to be at most ≈ log 𝑑 ≪ 𝑑
▶ Without noise, 𝑋 = 𝑥∗𝑣∗ for some 𝑣 ∈ C𝑝, ‖𝑣‖ = 1
▶ In some cases, first statistically optimal result without needing to solve an SDP

1Can be extended to isotropic sub-Gaussian with some additional assumptions for identifiability.
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What about tightness?

We were solving

min
𝑍⪰0

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑍⟩ − 𝑦𝑖)2 s.t. rank(𝑍) ≤ 𝑝.

But we want a rank-1 𝑍 = 𝑥𝑥∗ for some 𝑥 ∈ C𝑑.

▶ Without noise, 𝑍 = 𝑋𝑋 ∗ = 𝑥∗𝑥∗
∗ , so tight

▶ With noise, in general rank(𝑋) > 1 so not tight…

▶ However, the error bound on ‖𝑋𝑋 ∗ − 𝑥∗𝑥∗
∗‖∗ combined with eigenvector perturbation

bounds ensures that the best rank-1 approximation to 𝑋 still gives a good statistical
estimator
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Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). “Optimal

convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer”. In: IEEE
Trans. Inf. Theory 69.3, pp. 1866–1882

▶ Promising empirical results with estimator of the form

min
𝑋∈C𝑑×𝑝

𝑛
∑
𝑖=1

(⟨𝐴𝑖, 𝑋𝑋 ∗⟩ − 𝑦𝑖)2 + 𝜃(𝑋) ⟵ penalty based on ℓ1 norm

▶ Difficulty: every version of this I can think of with an ℓ1 norm has spurious local optima

due to nonsmoothness

▶ Questions:
▶ Why does it work so well empirically?

▶ Is there a formulation more amenable to theory?
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Example problem 2: graph clustering

▶ Graph 𝐺 = (𝑉, 𝐸), 𝑉 = {1, … , 𝑛}
▶ We want to label the vertices in a way that corresponds to the edge information
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Signed graph clustering

For simplicity, consider signed graph clustering

▶ (Unsigned clustering also works with some tweaks)

There is some (unknown) ground-truth labeling 𝑧1, … , 𝑧𝑛 ∈ {±1}, and for each edge, we

observe (approximately) the relative sign of its vertices:

𝑅𝑖𝑗 ≈ 𝑧𝑖𝑧𝑗 for (𝑖, 𝑗) ∈ 𝐸

Estimate of clusters is

arg max
𝑥∈{±1}𝑛

∑
(𝑖,𝑗)∈𝐸

𝑅𝑖𝑗𝑥𝑖𝑥𝑗
⏟⏟⏟⏟⏟

=⟨𝐶,𝑥𝑥𝑇⟩
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A discrete problem

We end up with a combinatorial optimization problem

max
𝑥∈{±1}𝑛

⟨𝐶, 𝑥𝑥𝑇⟩

Has similar structure to NP-hard max-cut problem

▶ But graph clustering is not (always) NP-hard, so maybe we can do better

▶ Q: What is a good algorithm (other than brute-force search)?
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Continuous relaxation

We are maximizing

⟨𝐶, 𝑥𝑥𝑇⟩ = ∑
𝑖,𝑗

𝐶𝑖𝑗𝑥𝑖𝑥𝑗.

We can make this continuous and smooth by relaxing

𝑥𝑖𝑥𝑗, 𝑥1, … , 𝑥𝑛 ∈ {±1}

↓

⟨𝑥𝑖, 𝑥𝑗⟩, 𝑥1, … , 𝑥𝑛 ∈ R𝑝, ‖𝑥𝑖‖ = 1, 𝑝 ≥ 2

In matrix notation

max
𝑋∈R𝑛×𝑝

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1

Smooth but nonconvex
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More general problem: orthogonal group synchronization on graph
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▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Each node 𝑖 has associated 𝑟 × 𝑟 orthogonal matrix 𝑍𝑖 (𝑍𝑖𝑍𝑇

𝑖 = 𝐼𝑟)
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
▶ Goal: estimate 𝑍1, … , 𝑍𝑛
▶ Many applications in robotics, computer vision, signal processing…
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General optimization problem

Setup:
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R ≈ 110°

▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Want to estimate 𝑟 × 𝑟 orthogonal matrices 𝑍1, … , 𝑍𝑛
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
Estimator:

max
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
⟨𝑅𝑖𝑗, 𝑌𝑖𝑌𝑇

𝑗 ⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛, or

max
𝑌∈R𝑟𝑛×𝑟

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag⏟⏟⏟
𝑛 diag. 𝑟×𝑟 blks

(𝑌𝑌𝑇) = 𝐼𝑟𝑛

Relaxed version (orthogonal group → Stiefel manifold): for 𝑝 > 𝑟,

max
𝑌∈R𝑟𝑛×𝒑

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛
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A landscape guarantee (noiseless case)

Theorem (McRae and Boumal, 2024)

Suppose
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7

R ≈ 110°

▶ Measurement graph 𝐺 is connected
▶ We observe exactly 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑇

𝑗 ∈ R𝑟×𝑟, (𝑖, 𝑗) ∈ 𝐸
▶ 𝒑 ≥ 𝒓 + 𝟐, and we solve

Then every second-order critical point 𝑌 of

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛, 𝐶𝑖𝑗 = 𝑅𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐸

satisfies 𝑌𝑌𝑇 = 𝑍𝑍𝑇, where 𝑍 =
⎡
⎢
⎣

𝑍1
⋮

𝑍𝑛

⎤
⎥
⎦
.

▶ No dependence on the graph other than that it is connected.

▶ Condition on 𝑝 is optimal (Markdahl, 2021)
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Why 𝑝 ≥ 𝑟 + 2?
Simple problem instance:2 𝑟 = 1, 𝑧1 = ⋯ = 𝑧𝑛 = 1

max
𝑌∈R𝑛×𝑝 ∑

𝑖,𝑗
𝐴𝑖𝑗⟨𝑌𝑖, 𝑌𝑗⟩ s.t. ‖𝑌𝑖‖ = 1, 𝑖 = 1, … , 𝑛, 𝐴 is a graph adjacency matrix

Global optima are 𝑌1 = ⋯ = 𝑌𝑛 (“synchronized states”)

𝑝 = 1
discrete

𝑝 = 2
spurious local optimum

𝑝 = 3
no spurious optima

This is related to the topological notion of simple connectedness (Markdahl, 2021)

▶ Stiefel manifold St(𝑝, 𝑟) simply connected ⟺ 𝑝 ≥ 𝑟 + 2
2This is also known as Kuramoto oscillator synchronization, an important problem in dynamical systems.
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Tightness

When can we ensure that a solution/local optimum to

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛

has rank exactly 𝑟?
▶ As with phase retrieval, noiseless → exact recovery → tight

▶ Extension of result gives tightness with (some) noise if 𝑝 > 𝑟 + 2 (strict inequality)

▶ Stronger results possible with more assumptions (Ling, 2025)

▶ Especially in the simplest case 𝑟 = 1 (McRae, Abdalla, et al., 2025; Rakoto Endor and

Waldspurger, 2024; McRae, 2025a)

Tightness with noise possible when the SDP relaxation is tight and has strict complementarity
▶ Dual certificate matrix has rank exactly (𝑛 − 1)𝑟
▶ Quantitatively, depends on spectral properties of the graph
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Conclusions

▶ Nonconvex optimization problems arising in practical applications can

be surprisingly tractable to solve

▶ My recent work: theoretical guarantees of benign landscape
▶ Mild relaxation (adding variables) can help

Examples presented

▶ Phase retrieval

▶ Clustering/synchronization problems

What’s next?

▶ Many questions on these topics and more general low-rank matrix

optimization

▶ What interesting statistics/optimization problems are you working on?
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Thanks!
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