
1/24

Benign nonconvexity in overparametrized group synchronization

Andrew D. McRae

Institute of Mathematics, EPFL

Joint work with Nicolas Boumal

ETHZ DACO seminar

October 17, 2023



2/24

Orthogonal group synchronization on graph
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▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Each node 𝑖 has associated 𝑟 × 𝑟 orthogonal matrix 𝑍𝑖 (𝑍𝑖𝑍𝑇

𝑖 = 𝐼𝑟)
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
▶ Goal: estimate 𝑍1, … , 𝑍𝑛
▶ Useful for SLAM (robotics), image alignment, and many other applications
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First optimization approach

Setup:

▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Want to estimate orthogonal matrices 𝑍1, … , 𝑍𝑛
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
Least-squares optimization problem:

min
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
‖𝑅𝑖𝑗 − 𝑌𝑖𝑌𝑇

𝑗 ‖2
F s.t. 𝑌𝑖𝑌𝑇

𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

Equivalent problem (due to orthogonality):

max
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
⟨𝑅𝑖𝑗, 𝑌𝑖𝑌𝑇

𝑗 ⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

Nonconvex and in general has bad local optima.
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Relaxed optimization problem

First optimization problem (can have bad local minima):

max
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
⟨𝑅𝑖𝑗, 𝑌𝑖𝑌𝑇

𝑗 ⟩
⏟⏟⏟⏟⏟⏟⏟

=⟨𝐶,𝑌𝑌𝑇⟩ if 𝑌=
⎡
⎢⎢
⎣

𝑌1
⋮

𝑌𝑛

⎤
⎥⎥
⎦

s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

𝐶 is a symmetric 𝑟𝑛 × 𝑟𝑛 matrix. 𝑌𝑌𝑇 is a positive semidefinite 𝑟𝑛 × 𝑟𝑛 matrix; the semidefinite
relaxation (SDP) is then

max
𝑋∈R𝑟𝑛×𝑟𝑛

⟨𝐶, 𝑋⟩ s.t. 𝑋𝑖𝑖 = 𝐼𝑟, 1, … , 𝑛, 𝑋 ⪰ 0.

This is convex (no bad local minima) but expensive if 𝑛 is large.

Question: Is there an approach that

▶ is computationally efficient and
▶ has no bad local optima?
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Intermediate relaxation

SDP relaxation replaces 𝑌𝑌𝑇 by a general PSD matrix 𝑋 ∈ R𝑟𝑛×𝑟𝑛

▶ Original problem: for 𝑌 ∈ R𝑟𝑛×𝑟, 𝑌𝑌𝑇 has rank 𝑟
▶ SDP relaxation: matrix variable 𝑋 can have rank as large as 𝑟𝑛

Rank-𝑝 relaxation (𝑝 ≥ 𝑟):

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

𝑌𝑌𝑇 has rank at most 𝑝
▶ Bigger 𝑝 ⟹ more like (convex) SDP

▶ But number of optimization variables scales with 𝑝
Question: Does making 𝑝 just slightly bigger than 𝑟 help with nonconvexity?

▶ Empirically yes in robotics literature (e.g., Rosen et al. 2019; Dellaert et al. 2020)

▶ Can we explain/prove this?
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Main result (noiseless)

Rank-𝑝 relaxation (𝒑 replaces 𝒓):

max
𝑌∈R𝑟𝑛×𝒑

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛. (1)

Theorem

Suppose
▶ The measurement graph 𝐺 is connected
▶ The measurements are exact: we observe 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
▶ 𝒑 ≥ 𝒓 + 𝟐.

Then every second-order critical point 𝑌 of (1) can be written 𝑌 = 𝑍𝑈, where 𝑈𝑈 𝑇 = 𝐼𝑟.
Consequence:

▶ Recovers ground truth up to global orthogonal transformation

▶ Local algorithms with “generic” (e.g., random) initialization reach SOCP ⟹ optimum
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Oscillator interpretation

Kuramoto oscillator network on graph 𝐺

𝜃̇𝑖 = ∑
𝑗∼𝑖

sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, … , 𝑛

▶ 𝜃𝑖’s are angles: synchronization on unit circle 𝑆 1

▶ Common research question: for which 𝑮 does the network converge to “synchronized”

state 𝜃1 = ⋯ = 𝜃𝑛 for almost every initial state?

“Oscillator” on Stiefel manifold

Our setup can be interpreted as synchronization on the Stiefel manifold

St(𝑟, 𝑝) ≔ {𝑈 ∈ R𝑟×𝑝 ∶ 𝑈𝑈 𝑇 = 𝐼𝑟}

Our result: if 𝑝 ≥ 𝑟 + 2, every connected network synchronizes on St(𝑟, 𝑝)
▶ Note 𝑑-sphere 𝑆 𝑑 = St(1, 𝑑 + 1)



8/24

Proof sketch (noiseless)

Study second-order critical points of

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛,

where

𝐶𝑖𝑗 = {
𝑍𝑖𝑍𝑇

𝑗 (𝑖, 𝑗) ∈ 𝐸
0 otherwise.

WLOG assume 𝑍1 = ⋯ = 𝑍𝑛 = 𝐼𝑟 (same optimization landscape). Then

𝐶 = 𝐴
↑

Adjacency matrix of 𝐺

Kronecker prod.
↓
⊗ 𝐼𝑟
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Manifold optimization

Simplified: study second-order critical points of

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐴 ⊗ 𝐼𝑟, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

Each 𝑌𝑖 lies on a Stiefel manifold:

𝑌𝑖 ∈ St(𝑟, 𝑝) ≔ {𝑈 ∈ R𝑟×𝑝 ∶ 𝑈𝑈 𝑇 = 𝐼𝑟}

Allowed perturbations (tangent vectors) at 𝑌:

𝑌̇ =
⎡
⎢
⎣

𝑌̇1
⋮

𝑌̇𝑛

⎤
⎥
⎦

with 𝑌̇𝑖𝑌𝑇
𝑖 + 𝑌𝑖𝑌̇𝑇

𝑖 = 0.
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Criticality conditions

Optimization problem:

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐴 ⊗ 𝐼𝑟, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛. (2)

Let 𝐿 be the graph Laplacian matrix of 𝐺, i.e.,

𝐿𝑖𝑗 = {∑𝑘 𝐴𝑖𝑘 𝑖 = 𝑗
−𝐴𝑖𝑗 otherwise.

Set

𝑆(𝑌) = 𝐿 − SBD
↑

Sym. blk. diag.

(𝐿𝑌𝑌𝑇), where 𝐿 = 𝐿 ⊗ 𝐼𝑟.

Critical points of (2):

▶ First-order: 𝑆(𝑌)𝑌 = 0 (Riemannian gradient is zero)

▶ Second-order: for any tangent vector 𝑌̇, ⟨𝑆(𝑌), 𝑌̇𝑌̇𝑇⟩ ≥ 0 (Riemannian Hessian is PSD)
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Using (second-order) criticality

SOCP 𝑌 satisfies, for any tangent vector 𝑌̇ ∈ R𝑟𝑛×𝑝,

⟨𝐿 − SBD(𝐿𝑌𝑌𝑇), 𝑌̇𝑌̇𝑇⟩ ≥ 0.

Analysis key: choose the right 𝑌̇
Intuition: move in the direction of ground truth

𝑍 =
⎡
⎢
⎣

𝐼𝑟
⋮
𝐼𝑟

⎤
⎥
⎦

= 1𝑛 ⊗ 𝐼𝑟.

What if:
𝑌̇𝑌̇𝑇 = 𝑍𝑍𝑇 = (1𝑛1𝑇

𝑛 ) ⊗ 𝐼𝑟

Then

⟨𝐿, 𝑍𝑍𝑇⟩ ≥ ⟨SBD(𝐿𝑌𝑌𝑇), 𝑍𝑍𝑇⟩ = tr(𝐿𝑌𝑌𝑇) = ⟨𝐿, 𝑌𝑌𝑇⟩
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Structure of 𝐿

𝐿 graph Laplacian of 𝐺:
▶ 𝐿 is PSD

▶ 𝐿1𝑛 = 0; smallest eigenvalue 𝜆1(𝐿) = 0 with the constant eigenvector

▶ 𝐺 connected ⟹ every other eigenvalue strictly positive
What does this mean for 𝐿 = 𝐿 ⊗ 𝐼𝑟?

▶ 𝐿 is PSD

▶ 𝐿𝑍 = (𝐿 ⊗ 𝐼𝑟)(1𝑛 ⊗ 𝐼𝑟) = 0; 𝑟 zero eigenvalues corresponding to columns of 𝑍
▶ All other eigenvalues strictly positive

So

⟨𝐿, 𝑌𝑌𝑇⟩ ≤ ⟨𝐿, 𝑍𝑍𝑇⟩ = 0 ⟹ 𝐿𝑌 = 0 ⟹ 𝑌 = 𝑍𝑈

for some 𝑟 × 𝑝 matrix 𝑈. 𝑌1𝑌𝑇
1 = 𝐼𝑟 ⟹ 𝑈𝑈 𝑇 = 𝐼𝑟. Done!
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How to make a valid argument?

We showed

𝑌̇𝑌̇𝑇 = 𝑍𝑍𝑇 ⟹ ⟨𝐿, 𝑌𝑌𝑇⟩ ≤ ⟨𝐿, 𝑍𝑍𝑇⟩ ⟹ result

This is potentially illegal: 𝑌̇ needs to be a tangent vector, i.e.,

𝑌̇𝑖𝑌𝑇
𝑖 + 𝑌𝑖𝑌̇𝑇

𝑖 , 𝑖 = 1, … , 𝑛

𝑌̇𝑖 is valid if and only if it has the form

𝑌̇𝑖 = Γ𝑖 − 𝑌𝑖Γ𝑇
𝑖 𝑌𝑖

Intuition: 𝑌̇𝑌̇𝑇 ≈ 𝑍𝑍𝑇 = (1𝑛1𝑇
𝑛 ) ⊗ 𝐼𝑟 ⟺ 𝑌̇𝑖𝑌̇𝑇

𝑗 ≈ 𝐼𝑟 requires

𝑌̇1 ≈ ⋯ ≈ 𝑌̇𝑛 ⟹ Γ1 = ⋯ = Γ𝑛
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Randomization

We want

𝑌̇𝑖𝑌̇𝑇
𝑗 ≈ 𝐼𝑟, 𝑖, 𝑗 = 1, … , 𝑛.

We will try

𝑌̇𝑖 = Γ − 𝑌𝑖Γ𝑇𝑌𝑖, 𝑖 = 1, … , 𝑛.

Then

(𝑌̇𝑌̇𝑇)𝑖𝑗 = 𝑌̇𝑖𝑌̇𝑇
𝑗 = ΓΓ𝑇

🙂

− (𝑌𝑖Γ𝑇)2 − (Γ𝑌𝑇
𝑗 )2

😬

+ 𝑌𝑖Γ𝑇𝑌𝑖𝑌𝑇
𝑗 Γ𝑌𝑇

𝑗

😱

Simplified by choosing random Γ:

Γ𝑘ℓ
i.i.d.∼ 𝒩(0, 1) ⟹ E 𝑌̇𝑖𝑌̇𝑇

𝑗 = (𝑝 − 2)𝐼𝑟

😁

+ tr(𝑌𝑖𝑌𝑇
𝑗 )𝑌𝑖𝑌𝑇

𝑗

🤔

.
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Plugging in

We have random 𝑌̇ with E 𝑌̇𝑖𝑌̇𝑇
𝑗 = (𝑝 − 2)𝐼𝑟 + tr(𝑌𝑖𝑌𝑇

𝑗 )𝑌𝑖𝑌𝑇
𝑗

Second-order criticality works under expectation:

⟨𝐿 − SBD(𝐿𝑌𝑌𝑇), 𝑌̇𝑌̇𝑇⟩ ≥ 0 ⟹ ⟨𝐿 − SBD(𝐿𝑌𝑌𝑇),E 𝑌̇𝑌̇𝑇⟩ ≥ 0.

First, the easy part:

E 𝑌̇𝑖𝑌̇𝑇
𝑖 = (𝑝 + 𝑟 − 2)𝐼𝑟 ⟹ ⟨SBD(𝐿𝑌𝑌𝑇),E 𝑌̇𝑌̇𝑇⟩ = (𝑝 + 𝑟 − 2)⟨𝐿, 𝑌𝑌𝑇⟩.



16/24

The harder part

⟨𝐿,E 𝑌̇𝑌̇𝑇⟩ = ⟨𝐿 ⊗ 𝐼𝑟,E 𝑌̇𝑌̇𝑇⟩

= ∑
𝑖,𝑗

𝐿𝑖𝑗 tr(E 𝑌̇𝑖𝑌̇𝑇
𝑗 )

= ∑
𝑖,𝑗

𝐿𝑖𝑗 tr((𝑝 − 2)𝐼𝑟 + tr(𝑌𝑖𝑌𝑇
𝑗 )𝑌𝑖𝑌𝑇

𝑗 )

= (𝑝 − 2)𝑟 ∑
𝑖,𝑗

𝐿𝑖𝑗
⏟⏟⏟

=0

+ ∑
𝑖,𝑗

𝐿𝑖𝑗 tr
2(𝑌𝑖𝑌𝑇

𝑗 )

= ∑
𝑖,𝑗

𝐿𝑖𝑗 tr
2(𝑌𝑖𝑌𝑇

𝑗 ).
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A helpful trick

We need to calculate

⟨𝐿,E 𝑌̇𝑌̇𝑇⟩ = ∑
𝑖,𝑗

𝐿𝑖𝑗 tr
2(𝑌𝑖𝑌𝑇

𝑗 )

Because 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟,

tr(𝑌𝑖𝑌𝑇
𝑗 ) = 1

2 tr(𝑌𝑖𝑌𝑇
𝑗 + 𝑌𝑗𝑌𝑇

𝑖 )

= tr(𝐼𝑟 − 1
2(𝑌𝑖 − 𝑌𝑗)(𝑌𝑖 − 𝑌𝑇

𝑗 ))

= (𝑟 − 1
2‖𝑌𝑖 − 𝑌𝑗‖2

F).

Then, after more tedious computations,

tr2(𝑌𝑖𝑌𝑇
𝑗 ) = −𝑟2 + 2𝑟 tr(𝑌𝑖𝑌𝑇

𝑗 ) + 1
4‖𝑌𝑖 − 𝑌𝑗‖4

F .
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Finishing

We have shown

⟨𝐿,E 𝑌̇𝑌̇𝑇⟩ = ∑
𝑖,𝑗

𝐿𝑖𝑗(−𝑟2 + 2𝑟 tr(𝑌𝑖𝑌𝑇
𝑗 ) + 1

4‖𝑌𝑖 − 𝑌𝑗‖4
F)

= 2𝑟⟨𝐿, 𝑌𝑌𝑇⟩− 1
4 ∑

𝑖,𝑗
𝐴𝑖𝑗‖𝑌𝑖 − 𝑌𝑗‖4

F .

Then

(𝑝 + 𝑟 − 2)⟨𝐿, 𝑌𝑌𝑇⟩ = ⟨SBD 𝐿𝑌𝑌𝑇,E 𝑌̇𝑌̇𝑇⟩ ≤ ⟨𝐿,E 𝑌̇𝑌̇𝑇⟩

⟹ (𝑝 − 𝑟 − 2)⟨𝐿, 𝑌𝑌𝑇⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0 if 𝒑≥𝒓+𝟐

+ 1
4 ∑

𝑖,𝑗
𝐴𝑖𝑗‖𝑌𝑖 − 𝑌𝑗‖4

F

⏟⏟⏟⏟⏟⏟⏟
>0 if 𝑌𝑖’s not equal

≤ 0.

So we must have 𝑌1 = ⋯ = 𝑌𝑛, which completes the proof!
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How to handle noise?

Now

(𝑝 − 𝑟 − 2)⟨𝐿, 𝑌𝑌𝑇⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
quadratic

+ 1
4 ∑

𝑖,𝑗
𝐴𝑖𝑗‖𝑌𝑖 − 𝑌𝑗‖4

F

⏟⏟⏟⏟⏟⏟⏟
quartic

≤ noise terms

For simplicity, assume 𝑝 > 𝑟 + 2 and use only quadratic term.

⟨𝐿, 𝑌𝑌𝑇⟩ ≥ 𝜆2(𝐿) (1 −
‖𝑍𝑇𝑌‖2

F

𝑛2𝑟 )
⏟⏟⏟⏟⏟⏟⏟
error (normalized)

𝑛𝑟

▶ Robustness to noise depends on graph 𝐺 through 𝜆2(𝐿)
▶ Give error bound but not landscape result…
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Landscape analysis with noise

First-order critical point condition:

𝑆(𝑌)𝑌 = 0, where 𝑆(𝑌) = 𝐿+Δ − SBD((𝐿+Δ)𝑌𝑌𝑇)

Note

Δ small ⟹
↑

error bound

𝑌 ≈ 𝑍𝑈 ⟹
↑

𝐿𝑍=0

𝐿𝑌 ≈ 0

Then
𝑆(𝑌) ≈ 𝐿

𝑆(𝑌)𝑌 = 0 } ⟹ rank(𝑌) = 𝑟 < 𝑝

▶ 𝑌 second-order critical and rank-deficient ⟹ 𝑌𝑌𝑇 solves SDP relaxation
▶ ⟹ 𝑌 is globally optimal for original problem!
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Noisy landscape result

Theorem

Suppose
▶ Connected measurement graph 𝐺 on 1, … , 𝑛 with edges 𝐸.
▶ We observe 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑇

𝑗 + Δ𝑖𝑗 ∈ R𝑟×𝑟, (𝑖, 𝑗) ∈ 𝐸.
▶ 𝑝 > 𝑟 + 2, and we solve the rank-relaxed problem

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛,

where 𝐶𝑖𝑗 = 𝑅𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐸.

Then, if ‖𝜟‖ℓ𝟐
≤ 𝑪𝒑,𝒓

𝝀𝟐(𝑳)
√𝒏

, any second-order critical point 𝑌

▶ is a global optimum and
▶ has rank 𝑟 (i.e., we lost nothing from relaxation).
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Recap of results

11

2

3

5

4

6

7

▶ Relative 𝑟 × 𝑟 orthogonal group measurements 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇
𝑗 for (𝑖, 𝑗) edges of a

connected graph

▶ Rank-relaxed estimator of 𝑍:

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛. (3)

▶ If 𝑝 > 𝑟 + 2 and noise is small enough vs. graph connectivity:

▶ (3) has benign landscape
▶ Rank relaxation is tight (optima have rank 𝑟)
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Literature comparison

Landscape of rank-relaxed group synchronization

▶ Prior theoretical work (e.g., Ling 2022) focused on complete-graph case

▶ We extend to general graphs (losing some noise tolerance)

“Oscillator” networks over Stiefel manifold St(𝑟, 𝑝)
▶ Previous best result (e.g., Markdahl, Thunberg, and Goncalves 2020) requires

𝟐𝒑 ≥ 𝟑(𝒓 + 𝟏) (ours is 𝒑 ≥ 𝒓 + 𝟐)
▶ Our result best possible by topological argument (Markdahl 2021)

▶ Prior work conjectured our result from topology and empirical evidence

Our proof technique is similar to both but uses a better (randomized) perturbation
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Future directions

▶ Improve size dependence in noisy results (currently requires SNR = 𝜆2
‖Δ‖ℓ2

≳ √𝑛)

▶ Complex case (possibly-suboptimal results in our preprint)

▶ Oscillator synchronization on other manifolds

▶ Other problems with optimization over low-rank matrices

▶ stochastic block model

▶ low-rank matrix sensing

▶ sensor network localization/MDS

Preprint: Andrew D. McRae and Nicolas Boumal (2023). “Benign landscapes of

low-dimensional relaxations for orthogonal synchronization on general graphs”. In: arXiv:

2307.02941 [math.OC]

https://arxiv.org/abs/2307.02941
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