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Orthogonal group synchronization on graph

Graph G = (V,E) with vertices V ={1,..., n}
Each node i has associated r X r orthogonal matrix Z; (Z,Z] =1)
Observed data: R;; ~ ZiZjT for (i,j) €E

Goal: estimate Zy,...,Z,
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Useful for SLAM (robotics), image alignment, and many other applications



First optimization approach

Setup:
» Graph G = (V, E) with vertices V = {1,...,n}
» Want to estimate orthogonal matrices Zy,...,Z

» Observed data: Rij =~ Z,-ZJT for (i, j) € E

n

Least-squares optimization problem:

. T2 T :
 min_ > AR =YYl st vy =li=1..n
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Equivalent problem (due to orthogonality):

T T _ s
 max Z (Ry YY)y st vyl =li=1..n
i (ij)eE

Nonconvex and in general has bad local optima.



Relaxed optimization problem
First optimization problem (can have bad local minima):
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C is a symmetric rn X rn matrix. YY" is a positive semidefinite rn X rn matrix; the semidefinite
relaxation (SDP) is then

max (C,X) st. X;=1,1,...,.n,X = 0.
XER’TIX’n

This is convex (no bad local minima) but expensive if n is large.
Question: |s there an approach that
> is computationally efficient and

» has no bad local optima?



Intermediate relaxation

SDP relaxation replaces YY' by a general PSD matrix X & R

> Original problem: for Y € R™ ", YYT has rank r
» SDP relaxation: matrix variable X can have rank as large as rn
Rank-p relaxation (p = r):

T T _ P
Yerrrm{%(p (CYY')yst. XY, =1l,i=1..,n

YYT has rank at most P
» Bigger p => more like (convex) SDP
» But number of optimization variables scales with p
Question: Does making p just slightly bigger than r help with nonconvexity?
» Empirically yes in robotics literature (e.g., Rosen et al. 2019; Dellaert et al. 2020)

» Can we explain/prove this?



Main result (noiseless)
Rank-p relaxation (p replaces r):

T T .
YenI;%XP (CYY Yst. YY) =1l,i=1..n. (n

Theorem
Suppose

» The measurement groph G is connected

> The measurements are exact: we observe R;; = ZiZjT for (i,j) € E

> p>r+2
Then every second-order critical point Y of (1) can be written Y = ZU, where UU T = I,
Consequence:

» Recovers ground truth up to global orthogonal transformation

» Local algorithms with “generic” (e.g., random) initialization reach SOCP => optimum



Oscillator interpretation

Kuramoto oscillator network on graph G

éi = Zsin(ﬁj —8) i=1..n

j~i

> 0;'s are angles: synchronization on unit circle s!

» Common research question: for which G does the network converge to “synchronized”

state 8 = --- = 6, for almost every initial state?

"Oscillator” on Stiefel manifold
Our setup can be interpreted as synchronization on the Stiefel manifold

St(r,p) :={U e R*P: UUT =1}

Our result: if p > r+ 2, every connected network synchronizes on St(r, p)

» Note d-sphere S = St(1,d + 1)



Proof sketch (noiseless)

Study second-order critical points of

max  {(C,YYTY st VYT =1,i=1..n,

YERmxp
where
_ zz] (ij)€E
Y 0] otherwise.
WLOG assume Z; = --- = Z,, =/, (same optimization landscape). Then

Kronecker prod.
1
C=A®I

Adjacency matrix of G



Manifold optimization

Simplified: study second-order critical points of

T T =
Yenl?{%i(xp (A1, YY")yst. VY, =l,i=1..n

Each Y} lies on a Stiefel manifold:
Y, € St(r,p):={U € R*P: UUT =1}
Allowed perturbations (tangent vectors) at Y:
A L
y=|:| with " +vy" =0
Y,

n



Criticality conditions

Optimization problem:

T T _ ) i
YErR%(P (A1, YY")st. VY, =1,i=1..n (2)

Let L be the graph Laplacian matrix of G, i.e.,

ZkAik i=j

=
/ —Al-j otherwise.

Set
S(Y)=L—SBD(LYYT), where L=L®]I,.
Sym. bITk. diag.
Critical points of (2):
» First-order: S(Y)Y = O (Riemannian gradlent is zero)
> Second-order: for any tangent vector Y, (5(Y), YYT) = 0 (Riemannian Hessian is PSD)



Using (second-order) criticality
SOCP Y satisfies, for any tangent vector y € RMXP,
(L—sBD@YYT),yyTy>o0.

Analysis key: choose the right Y
Intuition: move in the direction of ground truth

What if: -
ywr=zzT=01" el

Then
(L,zzTy>(SBDLYYT), ZZTy = t(LyYT) = (L, YYT)



Structure of L

L graph Laplacian of G:
> L is PSD
» L1, =0; smallest eigenvalue A;(L) = O with the constant eigenvector
» G connected => every other eigenvalue strictly positive
What does this mean for L =L ® /,?
> Lis PSD
> LZ =(L®l)1,®!)=0; r zero eigenvalues corresponding to columns of Z
» All other eigenvalues strictly positive
So
(LYT)y<(LZZTy=0=LY=0=Y=2ZU

for some r X p matrix U. Y1Y1T =/ = uuT = /.. Done!



How to make a valid argument?

We showed .
YW =2zZT = (LyyTY<(LZZT) = result

This is potentially illegal: Y needs to be a tangent vector, i.e.,
vy T +vyTi=1..n

)‘/i is valid if and only if it has the form

V=6 =Y%n,

1 1

Intuition: YYT ~ Z2ZT = (IHIZ) ® <= YIYJT ~ I, requires

n



Randomization

We want o
YI.YJ.T ~ i j=1..n
We will try )
Y, =T =YY, i=1..n
Then

YTy =Yy =T =Ty — (v ))2 + vy ]
Simplified by choosing random T

e ™ NO.1) = EXY] = (p = 2)I, + (Y] )rr].

< &



Plugging in

- o T T
We have random Y with EYl»Yj =(p—2), + tr(Yl-Yj )Yin

Second-order criticality works under expectation:
(L —sBDLYYT),yyTy > 0= (L —SBDLYYT),EYYT)>0.
First, the easy part:

EYY] =(p+r—2) = (SBDIYYT).EYYT) = (p+r—2)(LYY").



The harder part

(LEYYTy=(L®I,EYYT)
o
= > L,;r(EYY])
ij
-
= > Ly tr((p — 2)I, + (Y vy )
ij
2 T
=(p—2)r ZLij+zLij” YY)
ij ij

=0
= > LY.
i



A helpful trick

We need to calculate
T T 2 T
(LEYYTy=> L,;v?(hY])
ij
Because YZY,T =1/,

1
w(vY/) = (Y] +vpy7)

=%n—gn—wm—ﬂ5>

1
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Then, after more tedious computations,

1
T T 4
w2 (Y1) = =% + 2re (Y1) + 7Y = VIIE.



Finishing
We have shown
e 1
(LEYYT) = ZL,-I(—rZ + 20 (Y1) + IIY; - lelé>
ij

— 1
= 2r(L, YYT)“Z ZAij“Yi - Yj”é‘
ij

Then
(p+r—2)LYYT) = (SBDZYYT EYYT) <(LEYYT)

— (p—r = L) 41 > gl =1l <0
>0 if p=r+2

>O if Y;'s not equal

So we must have Y; = --- =Y, which completes the proofl



How to handle noise?

Now

— 1
I(p —r— 2){L, YYT>'+Z ZAI'/”YI' — Yj”é < noise terms
) ,

quadratic

quartic
For simplicity, assume p > r 4 2 and use only quadratic term.

ZTy||2
[ [ Ilp)m

1’12I’

(LYYT) = 25(L) <

error (normalized)

> Robustness to noise depends on graph G through A, (L)

» Give error bound but not landscape result...



Landscape analysis with noise

First-order critical point condition:

S(Y)Y =0, where S(Y) = L+A — SBD((L+A)YYT)

Note
Asmal = Y~ZU — LY =0
erorbound  T70
Then _
S(Y)=L

SOy =0 = rank(Y)=r<p

» Y second-order critical and rank-deficient => YY T solves SDP relaxation

> —> Y is globally optimal for original problem!



Noisy landscape result

Theorem
Suppose

» Connected measurement graph G on 1,...,n with edges E.
> We observe R;; = ZiZf +4;; € R™ (i, j) € E.
» p >r+ 2, and we solve the rank-relaxed problem

max  (C,YYTY st Yyl =1,i=1..n,

YERMXP
where C;; = R;; for (i, j) € E.
Then, if |4, < ijrlz—\/(r_l:), any second-order critical point Y
» is a global optimum and

» has rank r (i.e., we lost nothing from relaxation).



Recap of results
O
O
© O

> Relative r X r orthogonal group measurements R;; & ZiZjT for (i, j) edges of a
connected graph

» Rank-relaxed estimator of Z:
T T _ P
Yerré?g(xp (CYY Yst Yy, =I, i=1..n (3)

» If p>r+ 2 and noise is small enough vs. graph connectivity:
» (3) has benign landscape
> Rank relaxation is tight (optima have rank r)



Literature comparison

Landscape of rank-relaxed group synchronization

» Prior theoretical work (e.g., Ling 2022) focused on complete-graph case

» We extend to general graphs (losing some noise tolerance)

"Oscillator” networks over Stiefel manifold St(r, p)

» Previous best result (e.g., Markdahl, Thunberg, and Goncalves 2020) requires
2p > 3(r+1) (oursis p=>r+2)
» Our result best possible by topological argument (Markdahl 2021)

» Prior work conjectured our result from topology and empirical evidence

Our proof technique is similar to both but uses a better (randomized) perturbation



Future directions

A
» Improve size dependence in noisy results (currently requires SNR = ]]A[[2 = \/n)
)

v

Complex case (possibly-suboptimal results in our preprint)

v

Oscillator synchronization on other manifolds

v

Other problems with optimization over low-rank matrices

» stochastic block model
» low-rank matrix sensing
» sensor network localization/MDS

Preprint: Andrew D. McRae and Nicolas Boumal (2023). "Benign landscapes of

low-dimensional relaxations for orthogonal synchronization on general graphs”. In: arXiv:
2307.02941 [math.0C]


https://arxiv.org/abs/2307.02941
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