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Low-rank matrix recovery by LASSO

Problem: estimate low-rank matrix 𝑀∗ ∈ R𝑑1×𝑑2 from

𝑦 = 𝒜(𝑀∗) + 𝜉,

▶ 𝒜∶ R𝑑1×𝑑2 → R𝑛 known linear measurement operator

▶ 𝜉 represents noise/error

Matrix LASSO estimate (Rohde and Tsybakov, 2011; Candès and Plan, 2011; Negahban and

Wainwright, 2011):

�̂� = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

Nuclear norm penalty promotes low solution rank

▶ Matches (presumed) structure of ground truth 𝑀∗
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Benefits of low rank at large scale

Difficulty to estimate/use rank-𝑟 𝑀 ∈ R𝑑1×𝑑2 scales with #DOF ≈ 𝑟(𝑑1 + 𝑑2):
▶ Statistics (#measurements and error)

▶ Algorithms (number of variables if we optimize directly over rank-𝑟 matrices)

▶ Storage/multiplication cost

Why the LASSO?

Estimate of low-rank 𝑀∗:

�̂� = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉

Convex and has (provably) great statistical properties, but…
▶ Optimization over full-rank matrices

▶ Direct solvers scale poorly
▶ Few theoretical guarantees that �̂� has low rank (potentially costly storage)
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LASSO rank bound

�̂� = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉 (LASSO)

Key requirement: 𝒜 has (𝑟, 𝛿) restricted isometry property (RIP) if

(1 − 𝛿)‖𝑀‖2
F ≤ ‖𝒜(𝑀)‖2 ≤ (1 + 𝛿)‖𝑀‖2

F whenever rank(𝑀) ≤ 𝑟 (RIP)

Theorem

Suppose
▶ rank(𝑀∗) = 𝑟∗
▶ 𝒜 has (2𝑟∗, 𝛿) RIP for sufficiently small 𝛿 > 0
▶ ‖𝒜∗(𝜉)‖op ≲ 𝜆

Then the LASSO solution �̂� is unique, and

rank(�̂�) ≤ (1 + 𝑐[𝛿 +
‖𝒜∗(𝜉)‖op

𝜆 ]
2

)𝑟∗ ≤ 1.1𝑟∗



5/12

Rank bound context

Theorem

Suppose
▶ rank(𝑀∗) = 𝑟∗
▶ 𝒜 has (2𝑟∗, 𝛿) RIP for sufficiently small 𝛿 > 0
▶ ‖𝒜∗(𝜉)‖op ≲ 𝜆

Then the LASSO solution �̂� is unique, and

rank(�̂�) ≤ (1 + 𝑐[𝛿 +
‖𝒜∗(𝜉)‖op

𝜆 ]
2

)𝑟∗ ≤ 1.1𝑟∗

▶ Classical assumptions in statistical theory of low-rank recovery, e.g., Candès and Plan

(2011) and Negahban and Wainwright (2011)

▶ First explicit rank bound (without exact recovery or stronger structural assumptions)
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Proof idea that doesn’t quite work

Original LASSO (sparse recovery):

𝑥 = arg min

𝑥∈R𝑑

1
2‖𝑦 − 𝐴𝑥‖2 + 𝜆‖𝑥‖1 where 𝑦 = 𝐴𝑥∗ + 𝜉

How to show 𝑥 is sparse?

▶ Sufficient to show support recovery
▶ Support is discrete + ℓ1 penalty ⟹ robust to noise (Wainwright, 2009)

How to translate to low-rank matrix 𝑀∗?

▶ Support of 𝑥∗ ⟶ row/column spaces of 𝑀∗
▶ Continuous objects: no longer robust to perturbation!
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Proof idea that does work

Matrix LASSO and subgradient optimality condition:

�̂� = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝜉 + 𝒜(𝑀∗ − 𝑀)‖2 + 𝜆‖𝑀‖∗

𝐸 ≔ 1
𝜆𝒜∗𝒜(𝑀∗ − �̂�) + 𝒜∗(𝜉) ∈ 𝜕‖�̂�‖∗

Compare to solution/subgradient of idealized problem:

𝑀𝜆 = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑀∗ − 𝑀‖2

F + 𝜆‖𝑀‖∗

𝐸𝜆 ≔ 1
𝜆(𝑀∗ − 𝑀𝜆) ∈ 𝜕‖𝑀𝜆‖∗

Proof steps:

▶ rank(�̂�) ≤ #{ℓ ∶ 𝜎ℓ(𝐸) = 1} (property of subgradient)

▶ rank(𝐸𝜆) ≤ rank(𝑀∗) = 𝑟∗ (formula in terms of SVD of 𝑀∗)

▶ Hard part: show 𝐸 ≈ 𝐸𝜆 (statistical analysis)
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Algorithmic consequences

We showed LASSO solution �̂� has low rank (good for storage/computation)

What about an efficient algorithm to solve the LASSO?

▶ #variables can be reduced by optimizing directly over low-rank matrices:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

▶ Equivalent if rank(�̂�) ≤ 𝑟 (true by our rank bound)

▶ However, constrained problem nonconvex
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Algorithmic result 1

Rank-constrained problem:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

𝑓(𝑀)
⏞⏞⏞⏞⏞⏞⏞1
2‖𝑦 − 𝒜(𝑀)‖2 +𝜆‖𝑀‖∗

Projected proximal gradient descent (stepsize 𝜂 > 0):

𝑀𝑡+1 = arg min

𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

⟨𝑀, ∇𝑓(𝑀𝑡)⟩ + 𝜆‖𝑀‖∗ + 1
2𝜂‖𝑀 − 𝑀𝑡‖2

F (PPGD)

Computed by truncated SVD (fast randomized algorithms)

Theorem (Informal)

Under the conditions of the rank bound, with appropriate 𝜂, the iterates of (PPGD)

converge linearly to the LASSO solution �̂� from any initialization.
▶ Resembles previous results (usually w/o ‖𝑀‖∗), e.g., Zhang, Bi, and Lavaei (2021)

▶ Key requirements: bound on rank(�̂�) and RIP
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Algorithmic result 2

Rank-constrained problem:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

Equivalent Burer-Monteiro factored formulation (Srebro, Rennie, and Jaakkola, 2004):

min
𝑈∈R𝑑1×𝑟

𝑉∈R𝑑2×𝑟

1
2‖𝑦 − 𝒜(𝑈𝑉𝑇)‖2 + 𝜆

‖𝑈‖2
F + ‖𝑉‖2

F

2 . (BM)

Smooth optimization over exactly 𝑟(𝑑1 + 𝑑2) variables.

Theorem (Informal)

Under the conditions of the rank bound, every second-order critical point (𝑈, 𝑉) of (BM)

(zero gradient and PSD Hessian) satisfies 𝑈𝑉𝑇 = �̂�.
▶ Many previous results assuming RIP and low-rank �̂�
▶ Follows from previous result (PPGD) by an argument of Ha, Liu, and Barber (2020)
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Limitations and future work

Restricted isometry property (RIP) quite strong assumption in matrix setting

(1 − 𝛿)‖𝑀‖2
F ≤ ‖𝒜(𝑀)‖2

2 ≤ (1 + 𝛿)‖𝑀‖2
F if rank(𝑀) ≤ 2𝑟 (RIP)

Common choice: 𝒜(𝑀)𝑖 = ⟨𝑋𝑖, 𝑀⟩, 𝑋1, … , 𝑋𝑛 i.i.d. random matrices

▶ Rank-1 𝑋𝑖 (good for computation) don’t give RIP (too heavy-tailed)

▶ Dense random 𝑋𝑖 (e.g., Gaussian entries) give RIP but computationally impractical

Weaker assumptions: ℓ2 lower isometry, ℓ1 isometry…

▶ Sufficient for good statistical recovery

▶ Q: Sufficient for rank bound/landscape results?
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Conclusion

LASSO algorithm for low-rank matrix recovery:

�̂� = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉

Contributions:

▶ Guarantee �̂� has low rank under classical assumptions (RIP, ‖𝒜∗(𝜉)‖op ≲ 𝜆)
▶ Consequently, fast low-rank algorithms (PPGD, BM) find the solution

Preprint: Andrew D. McRae (2024). “Low solution rank of the matrix LASSO under RIP with

consequences for rank-constrained algorithms”. In: arXiv: 2404.12828 [math.OC]

https://arxiv.org/abs/2404.12828
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