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Low-rank matrix recovery by LASSO

Problem: estimate low-rank matrix M, € R¥1%92 from

y=AM,)+¢

> A: R%*92 _, R™ known linear measurement operator

> & represents noise/error
Matrix LASSO estimate (Rohde and Tsybakov, 201 |; Candés and Plan, 201 1; Negahban and
Wainwright, 201 1):

. o
M= arg min  5lly = AM)|2 + AIM].
MERdIXdz

Nuclear norm penalty promotes low solution rank

» Matches (presumed) structure of ground truth M,



Benefits of low rank at large scale
Difficulty to estimate/use rank-r M & R¥*92 scales with #DOF =~ r(d; + dy):
» Statistics (#measurements and error)
» Algorithms (number of variables if we optimize directly over rank-r matrices)

» Storage/multiplication cost

Why the LASSO?

Estimate of low-rank M,:

-~ 1
M= aig min 5lly =AM + MM, where y = A(M,) + £
MERd]XdZ
Convex and has (provably) great statistical properties, but...
» Optimization over full-rank matrices
» Direct solvers scale poorly

> Few theoretical guarantees that M has low rank (potentially costly storage)



LASSO rank bound

,\ 1
M= arg min Sy = AM)? + AIM||, where y = A(M.) +¢
MERled2
Key requirement: A has (r, 8) restricted isometry property (RIP) if

(1= 8)IM]IZ S lAM)I> < (1 +8)IM||2 whenever rank(M) < r

Theorem
Suppose

» rank(M,) =r,
» A has (2r,,8) RIP for sufficiently smodl 6 > 0
> [lA(Ollop S A

Then the LASSO solution M is unique, ond

¥ 2
rank(M) < <1 +c[5+ w] >r* <1lir,

(LASSO)

(RIP)



Rank bound context

Theorem
Suppose

» rank(M,) =r,
> A has (2r,,8) RIP for sufficiently small § > 0
> [lA(Ollop S A

Then the LASSO solution M is unique, ond

" 2
rank(M) < <1 +c[5+ w] >r* <Ailr,

» Classical assumptions in statistical theory of low-rank recovery, e.g., Candés and Plan
(2011) and Negahban and Wainwright (2011)

» First explicit rank bound (without exact recovery or stronger structural assumptions)



Proof idea that doesn't quite work

Original LASSO (sparse recovery):

X = arg min %”y — Ax||2 + A||x]ly where y = Ax, + &
xeR?
How to show X is sparse?
> Sufficient to show support recovery
» Support is discrete 4+ £; penalty = robust to noise (Wainwright, 2009)
How to translate to low-rank matrix M,?
» Support of x, — row/column spaces of M,

» Continuous objects: no longer robust to perturbation!



Proof idea that does work
Matrix LASSO and subgradient optimality condition:

N 1
M = arg min §|]§+ AM, = M)||? + AM]|.
MGRdIXdZ

~ 1 o * O
Eims A AM. — 1) + A'(€) € 0| .
Compare to solution/subgradient of idealized problem:
1
My = arg min = [|M, = M| + M|,
MERd1Xd2

1
Ex ‘=§(M* — M;) € 9| IMy].

Proof steps:
> rank(M) < #{L : o,(E) = 1} (property of subgradient)
» rank(E;) <rank(M,) = r, (formula in terms of SVD of M,)
»> Hard part: show Ex E; (statistical analysis)



Algorithmic consequences

We showed LASSO solution M has low rank (good for storage/computation)

What about an efficient algorithm to solve the LASSO?

» #variables can be reduced by optimizing directly over low-rank matrices:

: f 2
min S |ly =AM+ 2[|M]].
MERdIXdz
rank(M)<r
> Equivalent if rank(M) < r (true by our rank bound)

» However, constrained problem nonconvex



Algorithmic result |

Rank-constrained problem:

FM)
_ i
min 2y = AMIZ +AM].
MERd1Xd2
rank(M)<r

Projected proximal gradient descent (stepsize n > 0):
My = arg min (M, VF(M,) + AIM]|, + 5-]IM — M| (PPGD)

M ER%X42
rank(M)<r

1
27)[

Computed by truncated SVD (fast randomized algorithms)

Theorem (Informal)
Under the conditions of the rank bound, with oppropriate n, the iterates of (PPGD)
converge linearly to the LASSO solution M from any initialization.
> Resembles previous results (usually w/o ||[M||,), e.g., Zhang, Bi, and Lavaei (2021)
> Key requirements: bound on rank(M) and RIP



Algorithmic result 2

Rank-constrained problem:

. 1
min 5 lly = AM)|* + AIM|l,
MERdP(dZ
rank(M)<r

Equivalent Burer-Monteiro factored formulation (Srebro, Rennie, and Jaakkola, 2004):

i U2 + |IV||2
UERdIXr
VERde'

Smooth optimization over exactly r(d; + d) variables.

Theorem (Informal)
Under the conditions of the rank bound, every second-order critical point (U,V) of (BM)
(zero gradient and PSD Hessian) satisfies UV = M.

» Many previous results assuming RIP and low-rank M

» Follows from previous result (PPGD) by an argument of Ha, Liu, and Barber (2020)



Limitations and future work

Restricted isometry property (RIP) quite strong assumption in matrix setting
(1 = OIIMIIE < lIAMIIZ < (1 + S)IMIIF if rank(M) < 2r (RIP)

Common choice: A(M); = (X;, M), Xi,..., X,, i.i.d. random matrices

n
» Rank-1 X; (good for computation) don't give RIP (too heavy-tailed)
» Dense random X; (e.g., Gaussian entries) give RIP but computationally impractical
Weaker assumptions: £, lower isometry, £; isometry...
» Sufficient for good statistical recovery

» Q: Sufficient for rank bound/landscape results?



Conclusion

LASSO algorithm for low-rank matrix recovery:

~ 1
f1 = arg min 2lly = AP+ AMI|. where y = AM,) + &
MeRd1><d2
Contributions:
> Guarantee M has low rank under classical assumptions (RIP, lA (Ollop S )
» Consequently, fast low-rank algorithms (PPGD, BM) find the solution
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