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Low-rank matrix recovery by LASSO

Problem: estimate low-rank matrix 𝑀∗ ∈ R𝑑1×𝑑2 from

𝑦 = 𝒜(𝑀∗) + 𝜉,

▶ 𝒜∶ R𝑑1×𝑑2 → R𝑛 known linear measurement operator

▶ 𝜉 represents noise/error

Matrix LASSO estimate (Rohde and Tsybakov, 2011; Candès and Plan, 2011; Negahban and

Wainwright, 2011):

𝑀̂ = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

Nuclear norm penalty promotes low solution rank

▶ Matches (presumed) structure of ground truth 𝑀∗
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Benefits of low rank at large scale

Difficulty to estimate/use rank-𝑟 𝑀 ∈ R𝑑1×𝑑2 scales with #DOF ≈ 𝑟(𝑑1 + 𝑑2):
▶ Statistics (#measurements and error)

▶ Algorithms (number of variables if we optimize directly over rank-𝑟 matrices)

▶ Storage/multiplication cost

Why the LASSO?

Estimate of low-rank 𝑀∗:

𝑀̂ = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉

Convex and has (provably) great statistical properties, but…
▶ Optimization over full-rank matrices

▶ Direct solvers scale poorly
▶ Few theoretical guarantees that 𝑀̂ has low rank (potentially costly storage)
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LASSO rank bound

𝑀̂ = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉 (LASSO)

Key requirement: 𝒜 has (𝑟, 𝛿) restricted isometry property (RIP) if

(1 − 𝛿)‖𝑀‖2
F ≤ ‖𝒜(𝑀)‖2 ≤ (1 + 𝛿)‖𝑀‖2

F whenever rank(𝑀) ≤ 𝑟 (RIP)

Theorem

Suppose
▶ rank(𝑀∗) = 𝑟∗
▶ 𝒜 has (2𝑟∗, 𝛿) RIP for sufficiently small 𝛿 > 0
▶ ‖𝒜∗(𝜉)‖op ≲ 𝜆

Then the LASSO solution 𝑀̂ is unique, and

rank(𝑀̂) ≤ (1 + 𝑐[𝛿 +
‖𝒜∗(𝜉)‖op

𝜆 ]
2

)𝑟∗ ≤ 1.1𝑟∗
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Rank bound context

Theorem

Suppose
▶ rank(𝑀∗) = 𝑟∗
▶ 𝒜 has (2𝑟∗, 𝛿) RIP for sufficiently small 𝛿 > 0
▶ ‖𝒜∗(𝜉)‖op ≲ 𝜆

Then the LASSO solution 𝑀̂ is unique, and

rank(𝑀̂) ≤ (1 + 𝑐[𝛿 +
‖𝒜∗(𝜉)‖op

𝜆 ]
2

)𝑟∗ ≤ 1.1𝑟∗

▶ Classical assumptions in statistical theory of low-rank recovery, e.g., Candès and Plan

(2011) and Negahban and Wainwright (2011)

▶ First explicit rank bound (without exact recovery or stronger structural assumptions)
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Proof idea that doesn’t quite work

Original LASSO (sparse recovery):

𝑥 = arg min

𝑥∈R𝑑

1
2‖𝑦 − 𝐴𝑥‖2 + 𝜆‖𝑥‖1 where 𝑦 = 𝐴𝑥∗ + 𝜉

How to show 𝑥 is sparse?

▶ Sufficient to show support recovery
▶ Support is discrete + ℓ1 penalty ⟹ robust to noise (Wainwright, 2009)

How to translate to low-rank matrix 𝑀∗?

▶ Support of 𝑥∗ ⟶ row/column spaces of 𝑀∗
▶ Continuous objects: no longer robust to perturbation!
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Proof idea that does work

Matrix LASSO and subgradient optimality condition:

𝑀̂ = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝜉 + 𝒜(𝑀∗ − 𝑀)‖2 + 𝜆‖𝑀‖∗

𝐸 ≔ 1
𝜆𝒜∗𝒜(𝑀∗ − 𝑀̂) + 𝒜∗(𝜉) ∈ 𝜕‖𝑀̂‖∗

Compare to solution/subgradient of idealized problem:

𝑀𝜆 = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑀∗ − 𝑀‖2

F + 𝜆‖𝑀‖∗

𝐸𝜆 ≔ 1
𝜆(𝑀∗ − 𝑀𝜆) ∈ 𝜕‖𝑀𝜆‖∗

Proof steps:

▶ rank(𝑀̂) ≤ #{ℓ ∶ 𝜎ℓ(𝐸) = 1} (property of subgradient)

▶ rank(𝐸𝜆) ≤ rank(𝑀∗) = 𝑟∗ (formula in terms of SVD of 𝑀∗)

▶ Hard part: show 𝐸 ≈ 𝐸𝜆 (statistical analysis)
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Algorithmic consequences

We showed LASSO solution 𝑀̂ has low rank (good for storage/computation)

What about an efficient algorithm to solve the LASSO?

▶ #variables can be reduced by optimizing directly over low-rank matrices:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

▶ Equivalent if rank(𝑀̂) ≤ 𝑟 (true by our rank bound)

▶ However, constrained problem nonconvex
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Algorithmic result 1

Rank-constrained problem:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

𝑓(𝑀)
⏞⏞⏞⏞⏞⏞⏞1
2‖𝑦 − 𝒜(𝑀)‖2 +𝜆‖𝑀‖∗

Projected proximal gradient descent (stepsize 𝜂 > 0):

𝑀𝑡+1 = arg min

𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

⟨𝑀, ∇𝑓(𝑀𝑡)⟩ + 𝜆‖𝑀‖∗ + 1
2𝜂‖𝑀 − 𝑀𝑡‖2

F (PPGD)

Computed by truncated SVD (fast randomized algorithms)

Theorem (Informal)

Under the conditions of the rank bound, with appropriate 𝜂, the iterates of (PPGD)

converge linearly to the LASSO solution 𝑀̂ from any initialization.
▶ Resembles previous results (usually w/o ‖𝑀‖∗), e.g., Zhang, Bi, and Lavaei (2021)

▶ Key requirements: bound on rank(𝑀̂) and RIP
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Algorithmic result 2

Rank-constrained problem:

min
𝑀∈R𝑑1×𝑑2
rank(𝑀)≤𝑟

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗

Equivalent Burer-Monteiro factored formulation (Srebro, Rennie, and Jaakkola, 2004):

min
𝑈∈R𝑑1×𝑟

𝑉∈R𝑑2×𝑟

1
2‖𝑦 − 𝒜(𝑈𝑉𝑇)‖2 + 𝜆

‖𝑈‖2
F + ‖𝑉‖2

F

2 . (BM)

Smooth optimization over exactly 𝑟(𝑑1 + 𝑑2) variables.

Theorem (Informal)

Under the conditions of the rank bound, every second-order critical point (𝑈, 𝑉) of (BM)

(zero gradient and PSD Hessian) satisfies 𝑈𝑉𝑇 = 𝑀̂.
▶ Many previous results assuming RIP and low-rank 𝑀̂
▶ Follows from previous result (PPGD) by an argument of Ha, Liu, and Barber (2020)
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Limitations and future work

Restricted isometry property (RIP) quite strong assumption in matrix setting

(1 − 𝛿)‖𝑀‖2
F ≤ ‖𝒜(𝑀)‖2

2 ≤ (1 + 𝛿)‖𝑀‖2
F if rank(𝑀) ≤ 2𝑟 (RIP)

Common choice: 𝒜(𝑀)𝑖 = ⟨𝑋𝑖, 𝑀⟩, 𝑋1, … , 𝑋𝑛 i.i.d. random matrices

▶ Rank-1 𝑋𝑖 (good for computation) don’t give RIP (too heavy-tailed)

▶ Dense random 𝑋𝑖 (e.g., Gaussian entries) give RIP but computationally impractical

Weaker assumptions: ℓ2 lower isometry, ℓ1 isometry…

▶ Sufficient for good statistical recovery

▶ Q: Sufficient for rank bound/landscape results?
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Conclusion

LASSO algorithm for low-rank matrix recovery:

𝑀̂ = arg min

𝑀∈R𝑑1×𝑑2

1
2‖𝑦 − 𝒜(𝑀)‖2 + 𝜆‖𝑀‖∗ where 𝑦 = 𝒜(𝑀∗) + 𝜉

Contributions:

▶ Guarantee 𝑀̂ has low rank under classical assumptions (RIP, ‖𝒜∗(𝜉)‖op ≲ 𝜆)
▶ Consequently, fast low-rank algorithms (PPGD, BM) find the solution

Preprint: Andrew D. McRae (2024). “Low solution rank of the matrix LASSO under RIP with

consequences for rank-constrained algorithms”. In: arXiv: 2404.12828 [math.OC]

https://arxiv.org/abs/2404.12828
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