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The problem

We study a quadratic problem over 𝑛 different (𝑟 − 1)-dimensional spheres:

max
𝑥1,…,𝑥𝑛∈R𝑟

𝑛
∑
𝑖,𝑗=1

𝐶𝑖𝑗⟨𝑥𝑖, 𝑥𝑗⟩ s.t. ‖𝑥𝑖‖ = 1 ∀𝑖

QCQP form:

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1

▶ Nonconvex, in general NP-hard (max-cut is one instance)

▶ Can we do better in some cases?

▶ In particular: what is the nonconvex landscape?
▶ What can we say about (arbitrary) local optima?
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Landscapes landscape

When does

max
𝑋∈R𝑛×𝒓

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1

have spurious (non-global) local minima?

The answer depends on 𝒓 and the cost matrix 𝐶:

1 𝑶(𝟏) ≈ √2𝑛 𝑛

2
𝑛

Structure

matters

“Generically” benign;

bad cases exist* Always benign*

Combinatorial opt. over {±1}𝑛

This talk: benign under structural assumptions on 𝐶

≃ convex

𝑟

*Boumal et al. (2019) and O’Carroll et al. (2022)
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Example 1: graph clustering

▶ Graph 𝐺 = (𝑉, 𝐸), 𝑉 = {1, … , 𝑛}
▶ We want to label the vertices in a way that corresponds to the edge information
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Signed graph clustering

For simplicity, consider signed graph clustering

▶ (Unsigned clustering also works with some tweaks)

If 𝑧1, … , 𝑧𝑛 ∈ {±1} are “true” cluster labels, we (approximately) observe relative signs

𝑅𝑖𝑗 ≈ 𝑧𝑖𝑧𝑗 for (𝑖, 𝑗) ∈ 𝐸

Estimate of clusters:

arg max
𝑥∈{±1}𝑛

∑
(𝑖,𝑗)∈𝐸

𝑅𝑖𝑗𝑥𝑖𝑥𝑗
⏟⏟⏟⏟⏟

=⟨𝐶,𝑥𝑥𝑇⟩

This is a discrete problem

▶ Q: What is a good algorithm?
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Continuous spherical relaxation

We are maximizing

⟨𝐶, 𝑥𝑥𝑇⟩ = ∑
𝑖,𝑗

𝐶𝑖𝑗𝑥𝑖𝑥𝑗.

We can make this continuous and smooth by relaxing

𝑥𝑖𝑥𝑗, 𝑥1, … , 𝑥𝑛 ∈ {±1}

↓

⟨𝑥𝑖, 𝑥𝑗⟩, 𝑥1, … , 𝑥𝑛 ∈ R𝑟, ‖𝑥𝑖‖ = 1, 𝑟 ≥ 2

We thus obtain our spherical QCQP:

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1

(Another question: is this tight?)
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Example 2: oscillator synchronization

Dynamical system of 𝑛 angles 𝜃1, … , 𝜃𝑛

𝑑𝜃𝑖
𝑑𝑡 =

𝑛
∑
𝑗=1

𝐴𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, … , 𝑛

Simple version of the “Kuramoto model”—angles are phases of interacting oscillators

If 𝐴 is the adjacency matrix of a connected graph, a family of stable equilibria is

𝜃1 = ⋯ = 𝜃𝑛 mod 2𝜋.

Q: are these the only stable equilibria?

▶ Model of “spontaneous synchronization” of natural systems

▶ Pendulums, fireflies, radio electronics…

▶ Answer depends on the coupling matrix 𝐴

(Counter)example
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Connection to optimization

“Kuramoto oscillator” dynamical system:

𝑑𝜃𝑖
𝑑𝑡 =

𝑛
∑
𝑗=1

𝐴𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, … , 𝑛 (KUR)

This is (maximizing) gradient flow of the (negative) potential

∑
𝑖,𝑗

𝐴𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)

By the angle parametrization of the unit circle, this is equivalent to

max
𝑋∈R𝑛×𝟐

⟨𝐴, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1 (POT)

Why is this useful? (See, e.g., Ling et al., 2019)

(KUR) “generically” synchronizes ⟺∗ only local optima of (POT) are 𝑋𝑋𝑇 = 11𝑇
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How to analyze (non)convex landscape?

Nonconvex problem

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1

For our applications, we hope local minima have the form 𝑋𝑋𝑇 = 𝑧𝑧𝑇 for some 𝑧 ∈ {±1}.

Compare this to the semidefinite relaxation

max
𝑍⪰0

⟨𝐶, 𝑍⟩ s.t. diag(𝑍) = 1.

This is convex, so there is a well-developed theory of how to certify a given solution.
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Convex dual certificate

How do we show that 𝑍∗ ⪰ 0 is optimal for

max
𝑍⪰0

⟨𝐶, 𝑍⟩ s.t. diag(𝑍) = 1?

Suppose there is a diagonal matrix Λ (Lagrange multipliers) such that

𝑆 ≔ Λ − 𝐶 satisfies

𝑆 ⪰ 0, and

𝑆𝑍∗ = 0

Then, for any feasible 𝑍 (𝑍 ⪰ 0 and diag(𝑍) = 1),

⟨𝐶, 𝑍∗⟩ − ⟨𝐶, 𝑍⟩ = ⟨Λ, 𝑍∗ − 𝑍⟩⏟⏟⏟⏟⏟
=0

+⟨𝑆, 𝑍⟩ − ⟨𝑆, 𝑍∗⟩⏟⏟⏟
=0

= ⟨𝑆, 𝑍⟩
≥ 0
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Convex dual certificate

Dual certificate of 𝑍∗ ⪰ 0 for

max
𝑍⪰0

⟨𝐶, 𝑍⟩ s.t. diag(𝑍) = 1

is 𝑆 = Λ − 𝐶 for diagonal Λ with

𝑆 ⪰ 0, and

𝑆𝑍∗ = 0.

If 𝑍∗ = 𝑧𝑧∗ for 𝑧 ∈ {±1}𝑛, then

𝑆𝑧𝑧∗ = 0 ⟺ Λ𝑧 = 𝐶𝑧 ⟺ Λ = diag(𝑧 ∘ (𝐶𝑧)).

Hence

𝑆 = 𝑆(𝑧) ≔ diag(𝑧 ∘ (𝐶𝑧)) − 𝐶.
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Dual certificate eigenvalues

Dual certificate (we hope):

𝑆 = 𝑆(𝑧) = diag(𝑧 ∘ (𝐶𝑧)) − 𝐶

▶ We need 𝑆𝑧 = 0 ✅ and 𝑺 ⪰ 𝟎
▶ Let 𝜆1 ≤ ⋯ ≤ 𝜆𝑛 be its (real) eigenvalues.

▶ 𝑆𝑧 = 0 ⟹ 𝑆 has a zero eigenvalue

▶ If 𝜆2 > 0, indeed 𝑆 ⪰ 0
▶ Furthermore, the solution 𝑧𝑧𝑇 is unique and the SDP is tight

▶ Analysis recipe: for some 𝑧 ∈ {±1}, prove that 𝜆2 > 0 (based on problem structure)

The eigenvalues turn out to be key in understanding the nonconvex landscape as well…
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A nonconvex landscape result

Consider the nonconvex problem

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1 (NCVX)

Theorem (Rakoto Endor and Waldspurger (2024))

For 𝑧 ∈ {±1}, suppose 𝑆 ≔ diag(𝑧 ∘ (𝐶𝑧)) − 𝐶 satisfies 𝜆2(𝑆) > 0. Then, if

𝜆𝑛(𝑆)
𝜆2(𝑆) < 𝑟,

every local optimum* 𝑋 of (NCVX) satisfies 𝑋𝑋𝑇 = 𝑧𝑧𝑇.

▶ Optimal in some cases

*Second-order (gradient and Hessian) optimality suffices.
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Example: synchronization on Erdős–Rényi graph

Simple example:

▶ 𝑧 = 1, 𝑟 = 2
▶ Cost matrix 𝐶 = 𝐴, where 𝐴 is adjacency matrix of Erdős–Rényi random graph 𝒢(𝑛, 𝑝):

𝐴𝑖𝑗 = {
1 with probability 𝑝
0 with probability 1 − 𝑝

Oscillator network on graph synchronizes ⟺ benign landscape of

max
𝑋∈R𝑛×2

⟨𝐴, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1.

𝑋𝑋𝑇 = 11𝑇 is the unique global optimum when the graph is connected

▶ Happens with probability → 1 as 𝑛 → ∞ if

𝑝 ≥ (1 + 𝜖)
log 𝑛

𝑛

▶ But we need to rule out non-synced local optima…
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Landscape of Erdős–Rényi graph synchronization

▶ 𝐴 adjacency matrix of Erdős–Rényi random graph 𝒢(𝑛, 𝑝)
▶ Dual certificate is just the graph Laplacian:

𝑆 = 𝐿 = diag(𝐴1) − 𝐴

For an Erdős–Rényi graph,

E 𝐿 = 𝑛𝑝(𝐼𝑛 − 1
𝑛11𝑇) ⟹

𝜆𝑛(E 𝐿)
𝜆2(E 𝐿) = 1.

However, with randomness, to have
𝜆𝑛(𝐿)
𝜆2(𝐿)

< 2 requires

𝑝 ≫
log 𝑛

𝑛 😕

Can we do better?
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Noise characteristics

▶ 𝐴 adjacency matrix of Erdős–Rényi random graph 𝒢(𝑛, 𝑝)
▶ Dual certificate is the graph Laplacian:

𝑆 = 𝐿 = diag(𝐴1) − 𝐴

Write

𝐴 = E𝐴 + (𝐴 − E𝐴)⏟⏟⏟
≕Δ𝐴

= 𝑝11𝑇 + Δ𝐴

⇓

𝐿 = 𝑛𝑝(𝐼𝑛 − 1
𝑛11𝑇) + diag(Δ𝐴1) − Δ𝐴⏟⏟⏟⏟⏟⏟⏟

≕Δ𝐿

For 𝑝 ≈ log 𝑛
𝑛

, the noise spectral norm ‖Δ𝐿‖ℓ2
is dominated by the diagonal diag(Δ𝐴1).
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Improved landscape result—diagonal preconditioning

Consider the nonconvex problem

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1 (NCVX)

Theorem (McRae (2025))

For 𝑧 ∈ {±1}, suppose 𝑆 ≔ diag(𝑧 ∘ (𝐶𝑧)) − 𝐶 satisfies 𝜆2(𝑆) > 0.
Let 𝐷 be any diagonal matrix with strictly positive diagonal entries. If

𝜆𝑛(𝐷−1/2𝑆𝐷−1/2)
𝜆2(𝐷−1/2𝑆𝐷−1/2)

< 𝑟,

every local optimum 𝑋 of (NCVX) satisfies 𝑋𝑋𝑇 = 𝑧𝑧𝑇.
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Back to Erdős–Rényi graphs

For 𝐴 adjacency matrix of Erdős–Rényi random graph 𝒢(𝑛, 𝑝),

𝑆 = 𝐿 = diag(𝐴1) − 𝐴

Take the preconditioner to be the vertex degree matrix:

𝐷 = diag(𝐴1)

Then

𝐷−1/2𝐿𝐷−1/2 = 𝐼𝑛 − 𝐷−1/2𝐴𝐷−1/2 ≕ ℒ

is the (symmetric) normalized graph Laplacian.
▶ Much better spectral concentration than ordinary graph Laplacian

▶ As long as 𝑝 ≥ (1 + 𝜖) log 𝑛
𝑛

(connectivity threshold)

𝜆𝑛(ℒ)
𝜆2(ℒ) → 1 < 2 as 𝑛 → ∞

(Hoffman et al., 2021, for example)
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Applications

We have synchronization of Kuramoto oscillator networks on Erdős–Rényi graphs 𝒢(𝑛, 𝑝) for

𝑝 ≥ (1 + 𝜖) log 𝑛
𝑛

(connectivity threshold):

▶ This result already shown by more specialized analysis (Abdalla et al., 2022)

▶ Previous analysis is complicated and fails for other problems
▶ Our normalized condition number analysis is more general and applies to

▶ Oscillator networks with negative edges (repulsion)

▶ Graph clustering (with noise)

▶ Results are information-theoretically optimal for several popular random models

▶ Previous work (McRae et al., 2025) required rank 𝑟 large near threshold
▶ New work only needs 𝑟 = 2 (circles)



20/20

Conclusions

We looked at nonconvex landscape of spherical optimization problems

max
𝑋∈R𝑛×𝑟

⟨𝐶, 𝑋𝑋𝑇⟩ s.t. diag(𝑋𝑋𝑇) = 1 (𝑟 is small)

Parting thoughts

▶ Structure (of 𝐶) coming from the application is critical

▶ Analysis depends on knowing the optimum in advance
▶ Extensions to orthogonal/unitary groups possible…

▶ {±1} special because exact recovery possible with noise

Preprint: Andrew D. McRae (2025). “Benign landscapes for synchronization on spheres via

normalized Laplacian matrices”. In: arXiv: 2503.18801 [math.OC]

Thanks!

https://arxiv.org/abs/2503.18801
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