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▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Each node 𝑖 has 𝑟 × 𝑟 orthogonal matrix 𝑍𝑖 (satisfying 𝑍𝑖𝑍𝑇

𝑖 = 𝐼𝑟)
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
▶ Goal: estimate 𝑍1, … , 𝑍𝑛
▶ Useful for SLAM (robotics), image alignment…

A first optimization approach

Least-squares optimization problem:

min
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
‖𝑅𝑖𝑗 − 𝑌𝑖𝑌𝑇

𝑗 ‖2
F s.t. 𝑌𝑖𝑌𝑇

𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

Equivalent problem (due to orthogonality of 𝑍𝑖’s):

max
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
⟨𝑅𝑖𝑗, 𝑌𝑖𝑌𝑇

𝑗 ⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛.

Setting

𝑌 =
⎡
⎢
⎣

𝑌1
⋮

𝑌𝑛

⎤
⎥
⎦

∈ R𝑟𝑛×𝑟,

we can rewrite this more compactly as

max
𝑌∈R𝑟𝑛×𝑟

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛. (LS)

𝐶 is a symmetric 𝑟𝑛 × 𝑟𝑛 matrix formed from the observations 𝑅𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸.
This is well-known to have bad local optima.

SDP relaxation

The semidefinite relaxation of (LS) is

max
𝑋∈R𝑟𝑛×𝑟𝑛

⟨𝐶, 𝑋⟩ s.t. 𝑋𝑖𝑖 = 𝐼𝑟, 1, … , 𝑛, 𝑋 ⪰ 0. (SDP)

This is convex (no bad local optimum) but expensive if 𝑛 is large.

Q: Is there an approach that

▶ is computationally efficient and
▶ has no bad local optimum?

Intermediate relaxation

The SDP relaxation replaces 𝑌𝑌𝑇 by a general PSD matrix 𝑋 ∈ R𝑟𝑛×𝑟𝑛 with

potentially much larger rank:
▶ Original problem: for 𝑌 ∈ R𝑟𝑛×𝑟, 𝑌𝑌𝑇 has rank 𝑟
▶ SDP relaxation: matrix variable 𝑋 can have rank as large as 𝑟𝑛

Rank-𝑝 relaxation (𝑝 ≥ 𝑟):

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛. (Rank-𝑝)

This is a Burer–Monteiro factorization of (SDP).

Q: How big does 𝑝 need to be to ensure no bad local optimum?

▶ For general 𝐶, we need 𝑝 = 𝑂(𝑛), so there is no reduction in the

number of variables over (SDP)

▶ Does our problem structure give a “benign optimization landscape” if 𝑝
is much smaller?

Analysis ideas

The constraint set in (Rank-𝑝) is a Riemannian manifold (specifically, a

product of 𝑛 Stiefel manifolds).

A second-order critical point 𝑌 of (Rank-𝑝) satisfies, for every perturbation

direction �̇� of 𝑌,
⟨𝐻(𝑌)�̇�, �̇�⟩ ≤ 0,

where 𝐻(𝑌) is the (Riemannian) Hessian that takes into account the constraints.

Allowed perturbations are tangent vectors to the constraint manifold:

�̇� =
⎡
⎢
⎣

�̇�1
⋮

�̇�𝑛

⎤
⎥
⎦

with 𝑌𝑖�̇�𝑇
𝑖 + �̇�𝑖𝑌𝑇

𝑖 = 0.

A general form for �̇�𝑖 is

�̇�𝑖 = 𝑌𝑖(𝑌𝑖Γ𝑇
𝑖 − Γ𝑇

𝑖 𝑌𝑖) for some Γ𝑖 ∈ R𝑟×𝑝.

Key idea: We choose Γ𝑖 randomly with

Γ𝑖 = 𝑍𝑖Γ, where Γ has i.i.d. 𝒩(0, 1) entries.

The rest of our proof is built on the inequality

0 ≥ ⟨𝐻(𝑌)�̇�, �̇�⟩ = ⟨𝐻(𝑌),E �̇��̇�𝑇⟩.

Other useful tools:

▶ Graph Laplacian matrix

▶ Dual analysis of (SDP)

Our proof heavily relies on the measurement structure 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇
𝑗 .

Theorem (Noiseless case)

Suppose 𝐺 = (𝑉, 𝐸) is connected, and the measurements are exact, i.e.,
𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸. Then, if 𝒑 ≥ 𝒓 + 𝟐, any second-order critical
point 𝑌 of (Rank-𝑝) satisfies 𝑌𝑌𝑇 = 𝑍𝑍𝑇. Thus rank(𝑌) = 𝑟, and 𝑌 exactly
recovers the ground truth 𝑍 up to some global orthogonal transformation.

Theorem (General noisy landscape)

Suppose 𝐺 = (𝑉, 𝐸) is connected. Let Δ ∈ R𝑟𝑛×𝑟𝑛 be the portion of 𝐶
corresponding to measurement error, i.e.,

Δ𝑖𝑗 = {
𝑅𝑖𝑗 − 𝑍𝑖𝑍𝑇

𝑗 if (𝑖, 𝑗) ∈ 𝐸,
0 otherwise.

Let 𝜆2 be the Fiedler value of 𝐺, i.e., the second-smallest eigenvalue of the
unnormalized graph Laplacian.
Then, if 𝒑 > 𝒓 + 𝟐

‖Δ‖ℓ2
≤

𝐶𝑝,𝑟
√𝑛 𝜆2,

then any second-order critical point 𝑌 of (Rank-𝑝) satisfies the following:
▶ 𝑌 is the unique solution to (Rank-𝑝) up to a global orthogonal

transformation.
▶ 𝑌 has rank 𝑟, and, if we write 𝑌 = 𝑍𝑈 for some 𝑍 ∈ R𝑛𝑟×𝑟 and

𝑈 ∈ R𝑟×𝑝 such that 𝑈𝑈 𝑇 = 𝐼𝑟, 𝑍 is the unique solution of (LS) up to
a global orthogonal transformation.

▶ 𝑌𝑌𝑇 is the unique solution to (SDP).

Key takeaways

▶ Benign landscape for 𝑝 = 𝑂(1); we only need 𝑂(𝑛) variables in

(Rank-𝑝)
▷ Good computational efficiency

▶ Noisy case: first such results for general graph 𝐺
▷ Depends on “signal to noise ratio” 𝜆2/‖Δ‖ℓ2

▶ In noiseless case, improves on previous best results requiring

2𝑝 ≥ 3(𝑟 + 1).
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