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Motivation: learning function on manifold domain

▶ Common machine learning model

▶ 𝑚-dimensional (Riemannian) manifold domain ℳ embedded in 𝑅𝑑 (𝑑 ≫ 𝑚)

▶ Does difficulty scale with 𝑑 or 𝑚?

▶ Sample complexity:

▶ Effective dimension of function spaces on manifold

▶ Learning theory results that respect effective dimension
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Concrete example

▶ Fourier series on circle:

𝑓(𝑥) = 𝑎0 + ∑
ℓ≥1

(𝑎ℓ cos(ℓ𝑥) + 𝑏ℓ sin(ℓ𝑥))

▶ (Reproducing kernel) Hilbert space ℋ of smooth functions:

‖𝑓‖2
ℋ =

𝑎2
0

𝑡0
+ ∑

ℓ≥1

𝑎2
ℓ + 𝑏2

ℓ
𝑡ℓ

▶ Bounded ℋ-norm ⟹ fast decay of Fourier coefficients determined by {𝑡ℓ}
▶ 𝑂(Ω) coefficients below cutoff frequency Ω
▶ More generally, functions on ℳ decompose into vibrational modes 𝑣ℓ and frequencies 𝜔ℓ
▶ Weyl law says ∣{ℓ ∶ 𝜔ℓ ≤ Ω}∣ ≤ 𝐶𝑚 vol(ℳ)Ω𝑚
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General problem: overview

▶ Main problem: Hilbert space regression with i.i.d. linear measurements

▶ Sample complexity for low prediction error: effective rank of measurement covariance

▶ Key tools: empirical covariance and empirical process bounds
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Framework

▶ ℋ arbitrary separable Hilbert space

▶ Take 𝑛 i.i.d. samples of 𝑌 = ⟨𝑋, 𝛽 ∗⟩ + 𝜉
▶ 𝑋 ∈ ℋ random

▶ 𝜉 zero-mean noise

▶ RKHS example: 𝛽 ∗ ⟷ 𝑓∗, ⟨𝑋, 𝛽 ∗⟩ ⟷ 𝑓∗(𝑥)
▶ Want small prediction error (𝐿2 error in RKHS):

𝑅(𝛽, 𝛽 ∗) = E⟨𝑋, 𝛽 − 𝛽 ∗⟩2

▶ We analyze regularized empirical risk minimizer (usual kernel estimate in RKHS):

𝛽 = arg min
𝛽∈ℋ

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − ⟨𝑋𝑖, 𝛽⟩)2 + 𝛼‖𝛽‖2
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Key quantities

▶ Assume E‖𝑋‖2 < ∞
▶ Difficulty of problem characterized by spectral decomposition of covariance Σ of 𝑋:

⟨𝛽1, 𝛽2⟩Σ ≔ ⟨Σ𝛽1, 𝛽2⟩ ≔ E[⟨𝑋, 𝛽1⟩⟨𝑋, 𝛽2⟩] = ∑
ℓ≥1

𝜎ℓ⟨𝛽1, 𝑣ℓ⟩⟨𝛽2, 𝑣ℓ⟩

▶ Fourier series: sampling operator covariance in ℋ has eigenvalues ≈ 𝑡ℓ if

‖𝑓‖2 = 𝑎2
0/𝑡0 + ∑ℓ(𝑎

2
ℓ + 𝑏2

ℓ )/𝑡ℓ
▶ Eigenvalues 𝜎ℓ ↓ 0, {𝑣ℓ} orthonormal basis for ℋ
▶ Risk 𝑅(𝛽, 𝛽 ∗) = ‖𝛽 − 𝛽 ∗‖2

Σ = ∑ℓ 𝜎ℓ⟨𝛽 − 𝛽 ∗, 𝑣ℓ⟩2

▶ If 𝜎ℓ decay quickly, prediction error approximated by finite-dimensional inner product
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Notation and assumptions

▶ Notation: 𝑝 ≥ 1 fixed dimension, 𝐺 = span{𝑣1, … , 𝑣𝑝}
▶ Boundedness of 𝑋 w.r.t. 𝐺: almost surely,

𝑝

∑
ℓ=1

⟨𝑋, 𝑣ℓ⟩2 ≲ 𝑝

▶ Boundedness of 𝑋 w.r.t. 𝐺⟂: almost surely,

∑
ℓ>𝑝

⟨𝑋, 𝑣ℓ⟩2
Σ ≲ 𝑝𝜎𝑝+1
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Main result (no noise)

Theorem

If 𝛿 ∈ (0, 1) and 𝑛 ≳ 𝑝 log
𝑝
𝛿
, and there is no noise (𝜉 = 0), then, with probability at least

1 − 𝛿,
𝑅(𝛽 ∗, 𝛽) ≲ (𝛼 + 𝜎𝑝+1)‖𝛽 ∗‖2.

▶ “Bias” error (𝛼 + 𝜎𝑝+1)‖𝛽 ∗‖2 depends on regularization and 𝑝-dimensional approximation
error

▶ Can even take 𝛼 ↓ 0 (interpolation)

▶ Not possible in previous results1 that depend on “regularized dimension” 𝑑𝛼 = ∑ℓ
𝜎ℓ

𝛼+𝜎ℓ

▶ 𝑛 ≳ 𝑝 log
𝑝
𝛿
standard for random design if we only assume bounded measurements2

1E.g., Daniel Hsu, Sham M. Kakade, and Tong Zhang (2014). “Random Design Analysis of Ridge

Regression”. In: Found. Comput. Math. 14, pp. 569–600.
2See, e.g., Chapter 12 in Simon Foucart and Holger Rauhut (2013). A Mathematical Introduction to

Compressive Sensing. New York: Birkhäuser.
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Main result (noisy)

Theorem

If 𝛿 ∈ (0, 1) and 𝑛 ≳ 𝑝 log
𝑝
𝛿
, 𝜉 is subexponential with variance 𝜎2, and 𝑛

log2 𝑛
≳

‖𝜉‖2
𝜓1

𝜎2 and
𝛼 ≳ 𝜎𝑝+1, then, with probability at least 1 − 𝛿,

𝑅(𝛽 ∗, 𝛽) ≲ 𝑝
𝑛 𝜎2 + (𝛼 + 𝜎𝑝+1)‖𝛽 ∗‖2.

▶ “Variance” error
𝑝
𝑛
𝜎2 standard from 𝑝-dimensional regression
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Ingredient I: covariance approximation

▶ Ideally,
1
𝑛 ∑𝑖⟨𝑋𝑖, 𝛽⟩2 ≳ ‖𝛽‖2

Σ uniformly in 𝛽 ∈ ℋ…

▶ …but this isn’t possible with finite samples if rank(Σ) = ∞
▶ Instead: prove for finite-dimensional 𝐺…
▶ …then show remainder is 𝑂(𝜎𝑝+1‖𝛽‖2)

0 1 2 3 4 5 6

Blue: function with ∑ 𝑒(ℓ/10)2
(𝑎2

ℓ + 𝑏2
ℓ ) < ∞

Red: approximation with 20 Fourier series frequencies
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Ingredient I: covariance approximation

▶ Actual bound:
1
𝑛

𝑛
∑
𝑖=1

⟨𝑋𝑖, 𝛽⟩2
ℋ ≳ ‖𝛽‖2

Σ − 𝜎𝑝+1‖𝛽‖2

▶ Proof method: concentration bound on 𝑝-dimensional random operators3 (need

𝑛 ≳ 𝑝 log
𝑝
𝛿
)

1
𝑛

𝑛
∑
𝑖=1

(𝒫𝐺 𝑋𝑖) ⊗ (𝒫𝐺 𝑋𝑖) ⪰ 𝑐 𝒫𝐺 Σ 𝒫𝐺

▶ ∑
𝑝
ℓ=1⟨𝑋, 𝑣ℓ⟩2 ≲ 𝑝 a.s. for all 𝛽 ∈ 𝐺 ⟹ (𝒫𝐺 𝑋𝑖) ⊗ (𝒫𝐺 𝑋𝑖) are bounded

▶ Other conditions on 𝑋?

▶ E.g., 𝑋 Gaussian would only need 𝑛 = 𝑂(𝑝) samples

▶ Manifold example: vibrational modes at random points?

3For example, matrix Chernoff bound in Joel Tropp (2015). “An Introduction to Matrix Concentration

Inequalities”. In: Found. Trends Mach. Learn. 8.1-2, pp. 1–230.
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Ingredient II: empirical process bound

▶ Need uniform bound on ∣
1
𝑛 ∑

𝑛
𝑖=1 𝜉𝑖⟨𝑋𝑖, 𝛽⟩∣

▶ Our approach (Cauchy-Schwartz):

E sup
𝛽∈𝐺

‖𝛽‖Σ≤1

∣
1
𝑛

𝑛
∑
𝑖=1

𝜉𝑖⟨𝑋𝑖, 𝛽⟩∣
2

= 𝑝
𝑛 𝜎2

E sup

𝛽∈𝐺⟂

‖𝛽‖≤1

∣
1
𝑛

𝑛
∑
𝑖=1

𝜉𝑖⟨𝑋𝑖, 𝛽⟩∣
2

=
∑ℓ>𝑝 𝜎ℓ

𝑛 𝜎2 ≲ 𝜎𝑝+1
𝑝
𝑛 𝜎2

▶ Combine and add empirical process concentration4:

∣
1
𝑛

𝑛
∑
𝑖=1

𝜉𝑖⟨𝑋𝑖, 𝛽⟩∣
2

≲ 𝑝
𝑛 𝜎2(‖𝛽‖2

Σ + 𝜎𝑝+1‖𝛽‖2)

4Radosław Adamczak (2008). “A Tail Inequality for Suprema of Unbounded Empirical Processes with

Applications to Markov Chains”. In: Electron. J. Probab. 13, pp. 1000–1034.
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Room for further work

▶ Alternative assumptions on random design variable 𝑋

▶ Need something like
1
𝑛 ∑𝑖⟨𝑋, 𝛽⟩2 ≳ ‖𝛽‖2

Σ

▶ Relax boundedness assumptions on 𝑋 (particularly ∑
𝑝
ℓ=1⟨𝑋, 𝑣ℓ⟩2

Σ ≲ 𝑝)?
▶ Also used it in empirical process bound

▶ Similar assumptions in other works5 which rely on operator concentration bounds

▶ When could we get away with 𝑛 ≳ 𝑝 (no log factor)?

5Such as, again, Daniel Hsu, Sham M. Kakade, and Tong Zhang (2014). “Random Design Analysis of Ridge

Regression”. In: Found. Comput. Math. 14, pp. 569–600.
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Summary

▶ New dimension-based sample complexity results for Hilbert space regression

▶ Via RKHS, important applications to learning on manifolds

▶ Potential room for improved/more general results with other probabilistic methods

▶ See preprint for machine learning treatment (arXiv link coming soon)


