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Motivation: learning function on manifold domain

» Common machine learning model

> m-dimensional (Riemannian) manifold domain M embedded in RY (d >> m)
» Does difficulty scale with d or m?

> Sample complexity:

» Effective dimension of function spaces on manifold
> Learning theory results that respect effective dimension



Concrete example

» Fourier series on circle:
fO) =ag+ > (ag cos(€x) + by sin(€x))
>
» (Reproducing kernel) Hilbert space ¢+ of smooth functions:
2 2 2
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» Bounded ¢#-norm => fast decay of Fourier coefficients determined by {t,}

> O(Q) coefficients below cutoff frequency Q

» More generally, functions on M decompose into vibrational modes v, and frequencies w,
> Weyl law says |[{£: wy < Q}) < C,, vol(M)Q™



General problem: overview

» Main problem: Hilbert space regression with i.i.d. linear measurements
» Sample complexity for low prediction error: effective rank of measurement covariance

> Key tools: empirical covariance and empirical process bounds



Framework

» J+ arbitrary separable Hilbert space
» Take n i.i.d. samples of Y = (X,B") + ¢
> X € ¢+ random

» & zero-mean noise

» RKHS example: B* «— f*, (X,B") «— f"(x)
» Want small prediction error (L, error in RKHS):

R(B.B") =E(X.B—pB")>

» We analyze regularized empirical risk minimizer (usual kernel estimate in RKHS):
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Key quantities

» Assume E]|X]|2 < oo
» Difficulty of problem characterized by spectral decomposition of covariance X of X:
(Br.B2)s = (2B B2) = ELLX BNX.B2)] = > ou(Brv (B )
>
» Fourier series: sampling operator covariance in ¢+ has eigenvalues & t, if
2 2 2 2
IFI* = ag/to + 2,(ag + b7) /1
» Eigenvalues o, | O, {v;} orthonormal basis for ¢+
> Risk R(B.B™) = 1B —B"NI2 = >, 00(f — B" . v)?

» If o, decay quickly, prediction error approximated by finite-dimensional inner product



Notation and assumptions

» Notation: p =1 fixed dimension, G = span{y;, ...,vp}

» Boundedness of X w.r.t. G: almost surely,
14
> (X)) Se
=1

> Boundedness of X w.r.t. G: almost surely,

2
Z(X:Ve)z < POt
I>p



Main result (no noise)

Theorem
If 6§ € (0,1) and n = plog % ond there is no noise (§ = 0), then, with probability ot least

1—35,
R(B™B) S (a+ o, )lIB"II

» “Bias" error (a+op+1)||[3*[|2 depends on regularization and p-dimensional approximation

error

» Can even take a | O (interpolation)

> Not possible in previous results' that depend on “regularized dimension” d, = Zl %
a+o;

> n> plogg standard for random design if we only assume bounded measurements

'"E.g., Daniel Hsu, Sham M. Kakade, and Tong Zhang (2014). "Random Design Analysis of Ridge

Regression”. In: Found. Comput. Math. 14, pp. 569-600.
2See, e.g., Chapter 12 in Simon Foucart and Holger Rauhut (2013). A Mathematical Introduction to

Compressive Sensing. New York: Birkhauser.



Main result (noisy)

Theorem

2
L 7
Iog2n ~ g2

If 6§ € (0,1) and n = plog % & is subexponential with variance o2, and
o= Ot then, with probability ot least 1 —§,

* A P *
R(B".B) S “o? + (a+opu)lBII*

. P . . .
> “Variance” error 202 standard from p-dimensional regression
n

and



Ingredient |: covariance approximation

1
> Ideally, = > (X;,8)? = |IBlI2 uniformly in B € ¢...

n 1
> ...but this isn't possible with finite samples if rank(Z) = oo
» Instead: prove for finite-dimensional G...

> ...then show remainder is O(o 4 1811%)
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Blue: function with Ze(z/'o)z (a? + bzz) < oo
Red: approximation with 20 Fourier series frequencies



Ingredient |: covariance approximation

» Actual bound: i
1 2 2 2
= > (XuB)s 2 IBIE — opillBll
=1

» Proof method: concentration bound on p-dimensional random opera’rors3 (need
nz plog §)
1 n
= > (Pe X)) ® (Pg X)) = cPg 2P
i=l1

> ZZ=1<X'VZ>2 Spas foral e G = (PgX;)® (PgX;) are bounded

» Other conditions on X?
» E.g., X Gaussian would only need n = O(p) samples
> Manifold example: vibrational modes at random points?

3For example, matrix Chernoff bound in Joel Tropp (2015). “An Introduction to Matrix Concentration

Inequalities”. In: Found. Trends Mach. Learn. 8.1-2, pp. 1-230.



Ingredient Il: empirical process bound

1

» Need uniform bound on —zl,n_1 fl-(Xi,ﬁ)l
n Li=

» Our approach (Cauchy-Schwartz):

2
< P _2
E 5;% ;;&(Xi:ﬁ) =5
llBllz=t
2

1 < z€>po-l P
E sup ;Zsﬂ(xi:ﬁ) =T‘72 5‘%4—1;‘72
et i=
lal=t

» Combine and add empirical process concentration™:

2
1 n
=> &(XuB)| S Z2(IBIZ + oprilIBI)

i=1

*Radostaw Adamczak (2008). "A Tail Inequality for Suprema of Unbounded Empirical Processes with

Applications to Markov Chains”. In: Electron. J. Probab. 13, pp. 1000—1034.



Room for further work

> Alternative assumptions on random design variable X
c ] 2 2
» Need something like ;Z,(Xﬁ> = 1Blls

» Relax boundedness assumptions on X (particularly 25=I<X’VZ>% < p)?
» Also used it in empirical process bound
> Similar assumptions in other works®> which rely on operator concentration bounds

» When could we get away with n = p (no log factor)?

Such as, again, Daniel Hsu, Sham M. Kakade, and Tong Zhang (2014). “"Random Design Analysis of Ridge
Regression”. In: Found. Comput. Math. 14, pp. 569—-600.



Summary

» New dimension-based sample complexity results for Hilbert space regression
> Via RKHS, important applications to learning on manifolds
» Potential room for improved/more general results with other probabilistic methods

» See preprint for machine learning treatment (arXiv link coming soon)




