Nonconvex landscapes for phase retrieval

Andrew D. McRae

EPFL Lausanne, Switzerland

ICCOPT July 23, 2025

The phase retrieval problem

Generalized linear model: for unknown $x_* \in \mathbf{C}^d$, suppose we observe

$$y_i \approx |\langle a_i, x_* \rangle|^2, i = 1, ..., n,$$

where $a_1, \dots, a_n \in \mathbf{C}^d$ are known measurement vectors.

Recovery problem: estimate x_*

Motivation: optical imaging

- ▶ Electromagnetic field (complex amplitude) is often linear...
- ▶ However, measured light intensity is the (squared) magnitude

Least-squares estimation

We observe

$$y_i \approx |\langle a_i, x_* \rangle|^2$$
, $a_1, \dots, a_n \in \mathbf{C}^n$ known, $x_* \in \mathbf{C}^n$ unknown

How do we efficiently **compute** as estimate of x_* ?

► (∃ vast literature)

Least-squares estimator of x_* :

$$\min_{\mathbf{x} \in \mathbf{C}^d} \sum_{i=1}^n (y_i - |\langle a_i, \mathbf{x} \rangle|^2)^2$$

Nonconvex: could have bad local minima

► How can we overcome this?

Low-rank matrix sensing approach

We observe

$$y_i \approx |\langle a_i, x_* \rangle|^2 = \langle a_i a_i^*, x_* x_*^* \rangle$$
, ("lifting" trick)

We can then use the techniques of (linear) low-rank matrix sensing

 $\triangleright x_* x_*^*$ is a rank-1 positive semidefinite matrix

"Lifted" matrix estimator $(A_i = a_i a_i^*)$:

$$\min_{Z \succeq 0} \sum_{i=1}^{n} (y_i - \langle A_i, Z \rangle)^2 \text{ s.t. } rank(Z) = 1$$

One approach: drop rank constraint to get convex semidefinite program ("PhaseLift")

- ▶ This is computationally expensive ($\approx d^2$ variables)
- Can we use the nonconvex problem directly?

We are interested in the **landscape**: when is αny local optimum a good solution?

Challenge 1: no restricted isometry property

Ignoring noise and using Burer-Monteiro, we have $(A_i = a_i a_i^*, Z_* = x_* x_*^*)$

$$\min_{\mathbf{x} \in \mathbf{C}^n} \sum_{i=1}^n \langle A_i, \mathbf{x} \mathbf{x}^* - Z_* \rangle^2$$

- Landscape of such problems well-studied...
- Most theory assumes restricted isometry property:

$$(1-\delta)\|H\|_F^2 \le \frac{1}{n} \sum_{i=1}^n \langle A_i, H \rangle^2 \not\le (1+\delta)\|H\|_F^2$$
 for low-rank H .

Upper restricted isometry fails for phase retrieval

More specialized analysis needed

Challenge 2: existing phase retrieval results make strong assumptions

Despite lack of RIP, ∃ theoretical results for phase retrieval

► For example, Sun et al. (2018), Cai et al. (2023)

Limitations

- ► Assume Gaussian measurements
- ▶ Require $n \gtrsim d \log d$ measurements (statistically suboptimal)
- For "harder" problem instances, nonconvex landscape is **not benign** in general!

Relaxation

To try to improve the landscape, we relax the rank constraint

$$\min_{Z\succeq 0} \ \sum_{i=1}^n (y_i - \langle A_i, Z \rangle)^2 \text{ s.t. } \operatorname{rank}(Z) \leq r \quad \Longleftrightarrow \quad \min_{X\in \mathbf{C}^{d\times r}} \ \sum_{i=1}^n (y_i - \langle A_i, XX^* \rangle)^2$$

- ▶ Motivated by work in matrix sensing and synchronization (Ling, 2023; Zhang, 2024)
- $ightharpoonup r = n \longleftrightarrow SDP$

Theoretically, not obvious this helps!

- In matrix sensing, sometimes "overparametrization" can introduce spurious local optimal
- ▶ How do we ensure the relaxation is tight?

Empirically, seems promising:

(Some) theoretical results

Relaxed nonconvex estimator ($y_i \approx \langle A_i, x_* x_*^* \rangle$, $A_i = a_i a_i^*$):

$$\min_{X \in \mathbf{C}^{d \times r}} \sum_{i=1}^{n} (y_i - \langle A_i, XX^* \rangle)^2$$
(BM-r)

Theorem (Representative)

If $a_1, ..., a_n$ are sub-Gaussian random vectors satisfying the assumptions of Krahmer and Stöger (2020), as long as

$$n \gtrsim d$$
 and $r \gtrsim \log d$,

every second-order critical point of (BM-r) satisfies (if there is no measurement error) $XX^* = x_*x_*^*$.

Comments:

- ▶ In some cases, first statistically optimal result without SDP
- Requires significantly different analysis than those assuming RIP
- Can be generalized to other PSD measurement and ground truth matrices
- ▶ The particular PSD structure avoids possible dangers of overparametrization
- Deterministic result looks suspiciously like a condition number

What's next?

Forthcoming

- Different loss functions
- ▶ Nonparametric/infinite-dimensional results

Future work

- ▶ Theory for more realistic (e.g., optical) measurements
- ► Additional structure (e.g., **sparsity**)

Improvements with modified loss

Quartic "intensity" estimator:

$$\min_{X \in \mathbf{C}^{d \times r}} \sum_{i=1}^{n} (y_i - \langle A_i, XX^* \rangle)^2$$

- ▶ Pros: Smooth, fits into matrix sensing framework nicely
- **Con:** Landscape guarantees (that are statistically optimal) require $r \gtrsim \log d$

"Amplitude" estimator:

$$\min_{X \in \mathbf{C}^{d \times r}} \sum_{i=1}^{n} (y_i^{1/2} - \langle A_i, XX^* \rangle^{1/2})^2$$

- New result: good landscape with only r = O(1)
- Similar results for
 - Poisson MLE loss
 - Nonconvex PhaseCut (phase retrieval via synchronization; Waldspurger et al., 2015)
- Preprint coming "soon"

Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). "Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer". In: *IEEE Trans. Inf. Theory* 69.3, pp. 1866–1882

Promising empirical results with estimator of the form

$$\min_{X \in \mathbf{C}^{d \times r}} \sum_{i=1}^{n} (y_i - \langle A_i, XX^* \rangle)^2 + \theta(X) \quad \longleftarrow \quad \text{penalty based on } \ell_1 \text{ norm}$$

- ightharpoonup Difficulty: every version of this I can think of with an ℓ_1 norm has spurious local optima due to nonsmoothness
- Questions:
 - Why does it work so well empirically?
 - Is there a formulation more amenable to theory?

Preprint (quartic loss): Andrew D. McRae (2025). "Phase retrieval and matrix sensing via benign and overparametrized nonconvex optimization". In: arXiv: 2505.02636 [math.0C]

Thanks!

References 1

- Cai, Jian-Feng, Meng Huang, Dong Li, and Yang Wang (2023). "Nearly optimal bounds for the global geometric landscape of phase retrieval". In: *Inverse Probl.* 39.7.
- Krahmer, Felix and Dominik Stöger (2020). "Complex Phase Retrieval from Subgaussian Measurements". In: *J. Fourier Anal. Appl.* 26.89.
- Ling, Shuyang (2023). "Solving Orthogonal Group Synchronization via Convex and Low-Rank Optimization: Tightness and Landscape Analysis". In: *Mαth. Progrαm.* 200, pp. 589–628.
- McRae, Andrew D. (2025). "Phase retrieval and matrix sensing via benign and overparametrized nonconvex optimization". In: arXiv: 2505.02636 [math.0C].
- McRae, Andrew D., Justin Romberg, and Mark A. Davenport (2023). "Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer". In: *IEEE Trans. Inf. Theory* 69.3, pp. 1866–1882.
- Sun, Ju, Qing Qu, and John Wright (2018). "A Geometric Analysis of Phase Retrieval". In: Found. Comput. Mαth. 18.5, pp. 1131–1198.
- Waldspurger, Irène, Alexandre d'Aspremont, and Stéphane Mallat (2015). "Phase recovery, MaxCut and complex semidefinite programming". In: Math. Program. 149, pp. 47–81.

References II

Zhang, Richard Y. (2024). "Improved global guarantees for the nonconvex Burer-Monteiro factorization via rank overparameterization". In: $M\alpha th$. Program.