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The phase retrieval problem

Generalized linear model: for unknown 𝑥∗ ∈ C𝑑, suppose we observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2, 𝑖 = 1, … , 𝑛,

where 𝑎1, … , 𝑎𝑛 ∈ C𝑑 are known measurement vectors.

Recovery problem: estimate 𝑥∗

Motivation: optical imaging

▶ Electromagnetic field (complex amplitude) is often linear…

▶ However, measured light intensity is the (squared) magnitude
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Least-squares estimation

We observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2, 𝑎1, … , 𝑎𝑛 ∈ C𝑛 known, 𝑥∗ ∈ C𝑛 unknown

How do we efficiently compute as estimate of 𝑥∗?

▶ (∃ vast literature)

Least-squares estimator of 𝑥∗:

min
𝑥∈C𝑑

𝑛
∑
𝑖=1

(𝑦𝑖 − |⟨𝑎𝑖, 𝑥⟩|2)2

Nonconvex: could have bad local minima

▶ How can we overcome this?
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Low-rank matrix sensing approach

We observe

𝑦𝑖 ≈ |⟨𝑎𝑖, 𝑥∗⟩|2 = ⟨𝑎𝑖𝑎∗
𝑖 , 𝑥∗𝑥∗

∗⟩⏟⏟⏟⏟⏟
linear in 𝑥∗𝑥∗

∗

, (“lifting” trick)

We can then use the techniques of (linear) low-rank matrix sensing
▶ 𝑥∗𝑥∗

∗ is a rank-1 positive semidefinite matrix

“Lifted” matrix estimator (𝐴𝑖 = 𝑎𝑖𝑎∗
𝑖 ):

min
𝑍⪰0

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑍⟩)2 s.t. rank(𝑍) = 1

One approach: drop rank constraint to get convex semidefinite program (“PhaseLift”)

▶ This is computationally expensive (≈ 𝑑2 variables)

▶ Can we use the nonconvex problem directly?

We are interested in the landscape: when is any local optimum a good solution?
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Challenge 1: no restricted isometry property

Ignoring noise and using Burer-Monteiro, we have (𝐴𝑖 = 𝑎𝑖𝑎∗
𝑖 , 𝑍∗ = 𝑥∗𝑥∗

∗)

min
𝑥∈C𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝑥𝑥∗ − 𝑍∗⟩2

▶ Landscape of such problems well-studied…

▶ Most theory assumes restricted isometry property:

(1 − 𝛿)‖𝐻‖2
F ≤ 1

𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝐻⟩2≰ (1 + 𝛿)‖𝐻‖2
F for low-rank 𝐻.

Upper restricted isometry fails for phase retrieval

▶ More specialized analysis needed
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Challenge 2: existing phase retrieval results make strong assumptions

Despite lack of RIP, ∃ theoretical results for phase retrieval

▶ For example, Sun et al. (2018), Cai et al. (2023)

Limitations
▶ Assume Gaussian measurements

▶ Require 𝑛 ≳ 𝑑 log 𝑑 measurements (statistically suboptimal)
▶ For “harder” problem instances, nonconvex landscape is not benign in general!
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Relaxation

To try to improve the landscape, we relax the rank constraint

min
𝑍⪰0

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑍⟩)2 s.t. rank(𝑍)≤ 𝒓 ⟺ min
𝑋∈C𝑑×𝒓

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩)2

▶ Motivated by work in matrix sensing and synchronization (Ling, 2023; Zhang, 2024)

▶ 𝑟 = 𝑛 ⟷ SDP

Theoretically, not obvious this helps!
▶ In matrix sensing, sometimes “overparametrization” can introduce spurious local optima!

▶ How do we ensure the relaxation is tight?

Empirically, seems promising:
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(Some) theoretical results

Relaxed nonconvex estimator (𝑦𝑖 ≈ ⟨𝐴𝑖, 𝑥∗𝑥∗
∗⟩, 𝐴𝑖 = 𝑎𝑖𝑎∗

𝑖 ):

min
𝑋∈C𝑑×𝑟

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩)2 (BM-𝑟)

Theorem (Representative)

If 𝑎1, … , 𝑎𝑛 are sub-Gaussian random vectors satisfying the assumptions of Krahmer and
Stöger (2020), as long as

𝑛 ≳ 𝑑 and 𝑟 ≳ log 𝑑,

every second-order critical point of (BM-𝑟) satisfies (if there is no measurement error)
𝑋𝑋 ∗ = 𝑥∗𝑥∗

∗.
Comments:

▶ In some cases, first statistically optimal result without SDP

▶ Requires significantly different analysis than those assuming RIP

▶ Can be generalized to other PSD measurement and ground truth matrices

▶ The particular PSD structure avoids possible dangers of overparametrization

▶ Deterministic result looks suspiciously like a condition number
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What’s next?

Forthcoming

▶ Different loss functions
▶ Nonparametric/infinite-dimensional results

Future work

▶ Theory for more realistic (e.g., optical) measurements

▶ Additional structure (e.g., sparsity)
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Improvements with modified loss

Quartic “intensity” estimator:

min
𝑋∈C𝑑×𝑟

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩)2

▶ Pros: Smooth, fits into matrix sensing framework nicely

▶ Con: Landscape guarantees (that are statistically optimal) require 𝑟 ≳ log 𝑑

“Amplitude” estimator:

min
𝑋∈C𝑑×𝑟

𝑛
∑
𝑖=1

(𝑦𝟏/𝟐
𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩𝟏/𝟐)2

▶ New result: good landscape with only 𝑟 = 𝑂(1)
▶ Similar results for

▶ Poisson MLE loss

▶ Nonconvex PhaseCut (phase retrieval via synchronization; Waldspurger et al., 2015)

▶ Preprint coming “soon”
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Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). “Optimal

convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer”. In: IEEE
Trans. Inf. Theory 69.3, pp. 1866–1882

▶ Promising empirical results with estimator of the form

min
𝑋∈C𝑑×𝑟

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩)2 + 𝜃(𝑋) ⟵ penalty based on ℓ1 norm

▶ Difficulty: every version of this I can think of with an ℓ1 norm has spurious local optima

due to nonsmoothness

▶ Questions:
▶ Why does it work so well empirically?

▶ Is there a formulation more amenable to theory?
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Preprint (quartic loss): Andrew D. McRae (2025). “Phase retrieval and matrix sensing via

benign and overparametrized nonconvex optimization”. In: arXiv: 2505.02636 [math.OC]

Thanks!

https://arxiv.org/abs/2505.02636
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