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The phase retrieval problem

Generalized linear model: for unknown x, € €, suppose we observe
~ 2 =1
yi &~ [apx)° i=1,..,n

where ay,...,a, € C? are known measurement vectors.

Recovery problem: estimate x,

Motivation: optical imaging

» Electromagnetic field (complex amplitude) is often linear...

» However, measured light intensity is the (squared) magnitude



Least-squares estimation

We observe

VR~ ](al-,x*)]z, ajy,...,a, € C" known,

How do we efficiently compute as estimate of x,?
» (3 vast literature)

Least—squares estimator of x,:

> 0 — Kanx)1?)?

min
xECd i=1

Nonconvex: could have bad local minima

» How can we overcome this?

x, € €' unknown



Low-rank matrix sensing approach

We observe
Vi N |(ai,><*)|2 = (a;a;, x,x}), ("lifting” trick)
M b g Sl

linear in x,x;
We can then use the techniques of (linear) low-rank matrix sensing
» x,x; is a rank-1 positive semidefinite matrix
“Lifted” matrix estimator (A; = a;a}):

n
~ — (A, ZN? st rank(Z) =1
min 2@, (A Z))* st rank(Z)

One approach: drop rank constraint to get convex semidefinite program ("PhaseLift”)
> This is computationally expensive (&~ d? variables)
» Can we use the nonconvex problem directly?

We are interested in the landscape: when is any local optimum a good solution?



Challenge |: no restricted isometry property

Ignoring noise and using Burer-Monteiro, we have (A; = a;aj, Z, = x,x)

n
min A xx*—Z, 2
o 244 )
» Landscape of such problems well-studied...
P> Most theory assumes restricted isometry property:
1 n
2 2 2
(1= 8)HIE < - z(Ai,H) £ (1+8)||H||Z for low-rank H.
=
Upper restricted isometry fails for phase retrieval

» More specialized analysis needed



Challenge 2: existing phase retrieval results make strong assumptions

Despite lack of RIP, 3 theoretical results for phase retrieval

» For example, Sun et al. (2018), Cai et al. (2023)
Limitations

» Assume Gaussian measurements

» Require n = dlogd measurements (statistically suboptimal)

» For “harder” problem instances, nonconvex landscape is not benign in generall
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Relaxation

To try to improve the landscape, we relax the rank constraint

n

n
i = (AL Z)N? st rank(Z)<r < i = (A, XXY))?
By 200~ (A Z)" st renk(Z)=r i, 2 0= A XX

i=

» Motivated by work in matrix sensing and synchronization (Ling, 2023; Zhang, 2024)
» r=n<«— SDP

Theoretically, not obvious this helps!
» In matrix sensing, sometimes “overparametrization” can introduce spurious local optimal
» How do we ensure the relaxation is tight?

Empirically, seems promising:
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(Some) theoretical results

. * *\.
Relaxed nonconvex estimator (y; & (A;, x,.x;), A; = a;a; )

n
min = (AL X X)) BM-r
min ;cv, (Ap X X)) (BM-r)
Theorem (Representative)
If ay,...,a, are sub-Gaussian random vectors satisfying the assumptions of Krahmer and

Stéger (2020), as long as
nzd and r 2 logd,

every second-order critical point of (BM-r) satisfies (if there is no measurement error)
XX =xx;.
Comments:

» In some cases, first statistically optimal result without SDP

» Requires significantly different analysis than those assuming RIP

» Can be generalized to other PSD measurement and ground truth matrices

» The particular PSD structure avoids possible dangers of overparametrization

» Deterministic result looks suspiciously like a condition number



What's next?

Forthcoming
» Different loss functions

» Nonparametric/infinite-dimensional results

Future work
» Theory for more realistic (e.g., optical) measurements

» Additional structure (e.g., sparsity)



Improvements with modified loss

n

Quartic “intensity” estimator:

n
min = (AL XXT))?
L %@, (Ap X X))
» Pros: Smooth, fits into matrix sensing framework nicely

» Con: Landscape guarantees (that are statistically optimal) require r = logd

"Amplitude” estimator:

n
: 1/2 $\1/242
min (y; "7 = (A, XX )
i S0 a0
» New result: good landscape with only r = O(1)
» Similar results for

» Poisson MLE loss
» Nonconvex PhaseCut (phase retrieval via synchronization; Waldspurger et al., 2015)

» Preprint coming “soon”



Open problem—nonconvex estimator with sparsity

Old paper: Andrew D. McRae, Justin Romberg, and Mark A. Davenport (2023). "Optimal
convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer”. In: /[EEE
Trans. Inf. Theory 69.3, pp. 1866—1882

» Promising empirical results with estimator of the form

n
min Z(yi — (A,-,XX*))2 +6(X) <«— penalty based on £ norm
Xecdxr i

» Difficulty: every version of this | can think of with an £; norm has spurious local optima
due to nonsmoothness
» Questions:

» Why does it work so well empirically?
» Is there a formulation more amenable to theory?



Preprint (quartic loss): Andrew D. McRae (2025). "Phase retrieval and matrix sensing via
benign and overparametrized nonconvex optimization”. In: arXiv: 2505.02636 [math.0C]

Thanks!


https://arxiv.org/abs/2505.02636

References |

B
E
[

Cai, Jian-Feng, Meng Huang, Dong Li, and Yang Wang (2023). "Nearly optimal bounds
for the global geometric landscape of phase retrieval”. In: Inverse Probl. 39.7.

Krahmer, Felix and Dominik Stéger (2020). "Complex Phase Retrieval from Subgaussian
Measurements”. In: J. Fourier Anal. Appl. 26.89.

Ling, Shuyang (2023). “Solving Orthogonal Group Synchronization via Convex and
Low-Rank Optimization: Tightness and Landscape Analysis”. In: Math. Program. 200,
pp. 589-628.

McRae, Andrew D. (2025). "Phase retrieval and matrix sensing via benign and
overparametrized nonconvex optimization”. In: arXiv: 2505.02636 [math.0C].

McRae, Andrew D., Justin Romberg, and Mark A. Davenport (2023). "Optimal convex
lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer”. In: /EEE
Trans. Inf. Theory 69.3, pp. 1866—1882.

Sun, Ju, Qing Qu, and John Wright (2018). "A Geometric Analysis of Phase Retrieval”.
In: Found. Comput. Math. 18.5, pp. 1131=1198.

Waldspurger, Iréne, Alexandre d'Aspremont, and Stéphane Mallat (2015). "Phase recovery,
MaxCut and complex semidefinite programming”. In: Math. Program. 149, pp. 47-81.


https://arxiv.org/abs/2505.02636

References 1l

[d Zhang, Richard Y. (2024). “Improved global guarantees for the nonconvex Burer-Monteiro
factorization via rank overparameterization”. In: Math. Program.



	Appendix
	References


