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Learning function on manifold domain

» Common statistics and machine learning model
» m-dimensional (Riemannian) manifold domain M embedded in RY (d > m)
> Traditional statistics: need n = ce samples to estimate function

» Can we get complexity that scales only with m?




Manifold function spaces

> Analysis tool: spectral decomposition of manifold Laplacian
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> Equivalent to — > = in R™.
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> w, frequency associated with mode v,

» {v,} orthonormal basis for L,(M)
» Example: Fourier series on interval/circle
> Weyl law: #{l: w; < Q} ~ ¢, vol(M)Q™ as Q — oo

» Dimension of space of Q-bandlimited functions
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Main result 1: nonasymptotic complexity

If M has curvature bounded by k, and Q = \V/m?3«k, then

#{l: w; < Q} < Cpvol(M)Q™ =: p(Q).

> First bound with explicit constants

» Hard bound on function space complexity on manifold



Kernel regression estimates
2
> Consider heat kernel k,(x,y) = 2>, e %t 1f/zvz(x)ve(y)

» Analogous to Gaussian RBF (27Tt)_m/2e_”"_y”2/2’
» Also closely approximated by RBF for small ¢

» Heat kernel reproducing kernel Hilbert space (RKHS) ¢+, has norm
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k.(x, y) on a section of the sphere



Main result 2: kernel regression error bounds

» Sample y; = f"(x;)+ &, i €{l,....,n}

> x;'s i.i.d. uniformly on &+; §&'s i.i.d. subexponential with variance o?

» Consider regularized estimate
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If Q= Vm3k n = p(Q)logp(Q), and o ~ e~ M/2 ypen

r * —0? * p(Q)
I = Flle, S e @4 g, +\) S0



Discussion

Our bound:

r * —Q2 * Q .
1F = Flle, < e @40 s, +\ 220 i n 2 p(2) 109 p(0)
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» Optimal choice of Q gives “"almost parametric” rate
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> For Q such that e =271/ s very small, p(Q) is effective dimension of ¢4,
» Remember p(Q) ~ Q™



Summary and next steps

» Wanted to show how sample complexity scales with the manifold dimension
» Result I: non-asymptotic O(Q™) bound on function space complexity on manifolds
P Result 2: effective-dimension based learning theory result for kernel methods

» Future work: can we get similar results with manifold-agnostic methods?

» For example, Gaussian RBF in Euclidean space as approximation




Wrap-up

» Preprint: https://arxiv.org/abs/2006.07642
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