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Learning function on manifold domain

▶ Common statistics and machine learning model

▶ 𝑚-dimensional (Riemannian) manifold domain ℳ embedded in R𝑑 (𝑑 ≫ 𝑚)

▶ Traditional statistics: need 𝑛 ≳ 𝐶 𝑑 samples to estimate function

▶ Can we get complexity that scales only with 𝑚?



3/9

Manifold function spaces

▶ Analysis tool: spectral decomposition of manifold Laplacian

▶ Equivalent to − ∑𝑖
𝜕2

𝜕𝑥2
𝑖
in R𝑚.

Δℳ 𝑓 =
∞
∑
ℓ=0

𝜔2
ℓ ⟨𝑓, 𝑣ℓ⟩𝐿2

𝑣ℓ

▶ 𝜔ℓ frequency associated with mode 𝑣ℓ
▶ {𝑣ℓ} orthonormal basis for 𝐿2(ℳ)

▶ Example: Fourier series on interval/circle

▶ Weyl law: #{ℓ ∶ 𝜔ℓ ≤ Ω} ∼ 𝑐𝑚 vol(ℳ) Ω𝑚 as Ω → ∞
▶ Dimension of space of Ω-bandlimited functions
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Main result 1: nonasymptotic complexity

Theorem

If ℳ has curvature bounded by 𝜅, and Ω ≳ √𝑚3𝜅, then

#{ℓ∶ 𝜔ℓ ≤ Ω} ≤ 𝐶𝑚 vol(ℳ)Ω𝑚 ≕ 𝑝(Ω).

▶ First bound with explicit constants

▶ Hard bound on function space complexity on manifold
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Kernel regression estimates

▶ Consider heat kernel 𝑘𝑡(𝑥, 𝑦) = ∑ℓ 𝑒−𝜔2
ℓ 𝑡/2𝑣ℓ(𝑥)𝑣ℓ(𝑦)

▶ Analogous to Gaussian RBF (2𝜋𝑡)−𝑚/2𝑒−‖𝑥−𝑦‖2/2𝑡

▶ Also closely approximated by RBF for small 𝑡
▶ Heat kernel reproducing kernel Hilbert space (RKHS) ℋ𝑡 has norm

‖𝑓‖2
ℋ𝑡

=
∞
∑
ℓ=0

𝑒𝜔2
ℓ 𝑡/2⟨𝑓, 𝑣ℓ⟩2

𝐿2

𝑘𝑡(𝑥, 𝑦) on a section of the sphere
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Main result 2: kernel regression error bounds

▶ Sample 𝑦𝑖 = 𝑓∗(𝑥𝑖) + 𝜉𝑖, 𝑖 ∈ {1, … , 𝑛}
▶ 𝑥𝑖’s i.i.d. uniformly on ℋ; 𝜉𝑖’s i.i.d. subexponential with variance 𝜎2

▶ Consider regularized estimate

𝑓 = arg min
𝑓∈ℋ𝑡

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖))2 + 𝛼‖𝑓‖2
ℋ𝑡

Theorem

If Ω ≳ √𝑚3𝜅, 𝑛 ≳ 𝑝(Ω) log𝑝(Ω), and 𝛼 ≈ 𝑒−Ω2𝑡/2, then

‖𝑓 − 𝑓∗‖𝐿2
≲ 𝑒−Ω2𝑡/4‖𝑓∗‖ℋ𝑡

+ √
𝑝(Ω)

𝑛 𝜎.
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Discussion

Our bound:

‖𝑓 − 𝑓∗‖𝐿2
≲ 𝑒−Ω2𝑡/4‖𝑓∗‖ℋ𝑡

+ √
𝑝(Ω)

𝑛 𝜎 if 𝑛 ≳ 𝑝(Ω) log𝑝(Ω)

▶ Optimal choice of Ω gives “almost parametric” rate

‖𝑓 − 𝑓∗‖𝐿2
≲ √

log𝑚/2 𝑛
𝑛

▶ For Ω such that 𝑒−Ω2𝑡/4 is very small, 𝑝(Ω) is effective dimension of ℋ𝑡
▶ Remember 𝑝(Ω) ≈ Ω𝑚
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Summary and next steps

▶ Wanted to show how sample complexity scales with the manifold dimension

▶ Result 1: non-asymptotic 𝑂(Ω𝑚) bound on function space complexity on manifolds

▶ Result 2: effective-dimension based learning theory result for kernel methods

▶ Future work: can we get similar results with manifold-agnostic methods?

▶ For example, Gaussian RBF in Euclidean space as approximation
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Wrap-up

▶ Preprint: https://arxiv.org/abs/2006.07642

https://arxiv.org/abs/2006.07642

