Sample complexity and effective dimension for regression on manifolds

Andrew D. McRae
Georgia Tech School of Electrical and Computer Engineering admcrae@gatech.edu
Joint work with Mark Davenport and Justin Romberg
Bernoulli-IMS One World Symposium
August 24-28, 2020

Learning function on manifold domain

- Common statistics and machine learning model
- m-dimensional (Riemannian) manifold domain \mathcal{M} embedded in $\mathbf{R}^{d}(d \gg m)$
- Traditional statistics: need $n \gtrsim C^{d}$ samples to estimate function
- Can we get complexity that scales only with m ?

Manifold function spaces

- Analysis tool: spectral decomposition of manifold Laplacian
- Equivalent to $-\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}$ in \mathbf{R}^{m}.

$$
\Delta_{\mathcal{M}} f=\sum_{\ell=0}^{\infty} \omega_{\ell}^{2}\left\langle f, v_{\ell}\right\rangle_{L_{2}} v_{\ell}
$$

- ω_{ℓ} frequency associated with mode v_{ℓ}
- $\left\{v_{\ell}\right\}$ orthonormal basis for $L_{2}(\mathcal{M})$
- Example: Fourier series on interval/circle
- Weyl law: $\#\left\{\ell: \omega_{\ell} \leq \Omega\right\} \sim c_{m} \operatorname{vol}(\mathcal{M}) \Omega^{m}$ as $\Omega \rightarrow \infty$
- Dimension of space of Ω-bandlimited functions

Main result 1: nonasymptotic complexity

Theorem

If \mathcal{M} has curvature bounded by κ, and $\Omega \gtrsim \sqrt{m^{3} \kappa}$, then

$$
\#\left\{\ell: \omega_{\ell} \leq \Omega\right\} \leq C_{m} \operatorname{vol}(\mathcal{M}) \Omega^{m}=: p(\Omega)
$$

- First bound with explicit constants
- Hard bound on function space complexity on manifold

Kernel regression estimates

- Consider heat kernel $k_{t}(x, y)=\sum_{\ell} e^{-\omega_{\ell}^{2} t / 2} v_{\ell}(x) v_{\ell}(y)$
- Analogous to Gaussian RBF $(2 \pi t)^{-m / 2} e^{-\|x-y\|^{2} / 2 t}$
- Also closely approximated by RBF for small t
- Heat kernel reproducing kernel Hilbert space (RKHS) H_{t} has norm

$$
\|f\|_{\mu_{t}}^{2}=\sum_{\ell=0}^{\infty} e^{\omega_{\ell}^{2} t / 2}\left\langle f, v_{\ell}\right\rangle_{L_{2}}^{2}
$$

$$
k_{t}(x, y) \text { on a section of the sphere }
$$

Main result 2: kernel regression error bounds

- Sample $y_{i}=f^{*}\left(x_{i}\right)+\xi_{i}, i \in\{1, \ldots, n\}$
- x_{i} 's i.i.d. uniformly on $み$; ξ_{i} 's i.i.d. subexponential with variance σ^{2}
- Consider regularized estimate

$$
\hat{f}=\underset{f \in \mu_{t}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\alpha\|f\|_{\mu_{t}}^{2}
$$

Theorem

If $\Omega \gtrsim \sqrt{m^{3} k}, n \gtrsim p(\Omega) \log p(\Omega)$, and $\alpha \approx e^{-\Omega^{2} t / 2}$, then

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \lesssim e^{-\Omega^{2} t / 4}\left\|f^{*}\right\|_{H_{t}}+\sqrt{\frac{p(\Omega)}{n}} \sigma .
$$

Discussion

Our bound:

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \lesssim e^{-\Omega^{2} t / 4}\left\|f^{*}\right\|_{\mu_{t}}+\sqrt{\frac{p(\Omega)}{n}} \sigma \text { if } n \gtrsim p(\Omega) \log p(\Omega)
$$

- Optimal choice of Ω gives "almost parametric" rate

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \lesssim \sqrt{\frac{\log ^{m / 2} n}{n}}
$$

- For Ω such that $e^{-\Omega^{2} t / 4}$ is very small, $p(\Omega)$ is effective dimension of H_{t}
- Remember $p(\Omega) \approx \Omega^{m}$

Summary and next steps

- Wanted to show how sample complexity scales with the manifold dimension
- Result 1: non-asymptotic $O\left(\Omega^{m}\right)$ bound on function space complexity on manifolds
- Result 2: effective-dimension based learning theory result for kernel methods
- Future work: can we get similar results with manifold-agnostic methods?
- For example, Gaussian RBF in Euclidean space as approximation

Wrap-up

- Preprint: https://arxiv.org/abs/2006.07642

