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Motivation: the synchronization of rotations problem

1o

Goal: estimate each node’s angle from relative angles on edges

» Many applications in robotics, computer vision, signal processing...



General problem: orthogonal group synchronization on graph

» Graph G = (V, E) with vertices V = {1,..., n}

» Each node i has associated r X r orthogonal matrix Z; (ZiZI-T =1)
> Observed data: R;; ~ Z,Z] for (i,j) € E

» Goal: estimate Z,...,Z

n



Optimization problem

Setup:
» Graph G = (V, E) with vertices V = {1,..., n}
» Want to estimate orthogonal matrices Zy,...,Z

» Observed data: Rij ~ Z,-ZJT for (i, j) € E

n

Least-squares/maximum likelihood estimator:

T T _ ;o
 max (.Z (R vivT) st. VY =1,i=1..n
i i,j)EE
CQP form: cyy’™ t. blkdiag(YYT) =1
QCQP form Yé?;,fx,( ) s lag(YY") = I,

n diag. rxr blks
Nonconvex and in general has bad local optima.

» r =1is max-cut—type problem (NP-hard in general)
» What does problem structure buy us?



Relaxations

Original problem (can have bad local minima):

T : Ty —
Yen;artgxr (C,YY") s.t. blkdiag(YY"') =1,

Semidefinite relaxation (SDP):

Xen;%xm(C,X) s.t. blkdiag(X) =1/,,, X = 0.

Convex (no bad local minima) but expensive if n is large.

Our approach
Intermediate relaxation: for p > r:

C.YYTY st blkdiag(YYT) =1
yamax ) s iag(YY") = I,

» Burer-Monteiro factorization of SDP
» Empirically successful in robotics literature (e.g., Rosen et al., 2019; Dellaert et al., 2020)

» Can we understand its performance theoretically?



Landscapes landscape

Focus on simplest case r = 1: when does
max  (C,YYT) s.t. diag(YYT) =1
yax, | ) ag(YY") = I,
(not) have bad local minima?

The answer depends on p and the cost matrix C:
Combinatorial opt. over {£1}"

~ SDP
Structure "Generically” benign;

matters bad cases exist'

'

Always benign'
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This work: benign under structural assumptions on C

"Boumal et al. (2019) and O’Carroll et al. (2022)



Main result

Theorem
Suppose

» Connected measurement graph G on 1,...,n with edges E.

» Groph Laplacian matrix has second-smallest eigenvalue A, > 0
T .
> We observe R;; = Z,Z; +;; € R™ (i, j) €E.
» p =>r+ 3, and we solve

T . TN _ _ .
Yen;er)l(xp (C,YY") s.t. blkdiag(YY') = I, Cij=R;j for (i,j) EE

If |4lle, = CP'%’ any second-order critical point Y satisfies YYT = ZZT, where Z € O(r)"
’ n
is a global optimum to the original (unrelaxed) problem.

» Prior results for complete graph: we extend* to general graphs
» Noiseless case ("Kuramoto oscillator” sync.): p = r + 2 suffices
> Optimal; previous best known condition 2p = 3(r + 1) (Markdahl, 2021)



Proof ideas

Goal: show global optimality of critical points of

C.YYTY st blkdiag(YY") =1 |
yomax ! ) s iag(YY") = I, (M

Optimization over product of Stiefel manifolds.
Critical points Y of (1): setting S(Y) = symblkdiag(CYYT) — C
» First-order: S(Y)Y = O (Riemannian gradlent is zero)
» Second-order: for any tangent vector Y, (5(Y), YYT) = 0 (Riemannian Hessian <X 0)

Using these to prove optimality is an art and depends on the problem structure (particularly
choosing Y in second-order condition)
Key innovations:

> A new randomized Y to plug into second-order inequality

» Study Laplacian of general graph (instead of complete-graph adjacency matrix)



Limitation: poor dimension scaling

Simple example
» Complete graph (1, = n)
> Gaussian noise (entries of A are i.i.d. JN(O,o?))

Our theorem requires
Ay

Vo & ||A]l, Sﬁ=\/54:*051
Previous results for complete-graph case:

> o< n'/4 suffices by similar but more specialized arguments (Ling, 2023b)

~

> o<, /] © suffices by involved “leave-one-out” analysis (Ling, 2022; Ling, 2023a)
ogn

Our results for general graphs scale poorly with the problem size n in some cases

> How can they be improved?



Specialization to r = 1: Z, synchronization

The orthogonal group O(r) becomes discrete when r =1
oM ={x}=12,

No longer “rotations” but closely linked to graph clustering

Even with noise, exact recovery becomes feasible

» Can we improve our results with this?



Stronger results for Z, sync.

Theorem

Suppose zj, ..., 2, € {1}, and
> We observe R;; = zz;+A;; ER (i, j) EE.

» p =>4, and we solve the rank-relaxed problem

T . Ty _ _ .
Yenl]!a}‘);la (C,YY") s.t. diag(YY') =1, Cij =Ry for (i,j) EE.

Then, if
A
C,gll1 lle, + max
no v/n

any second-order critical point Y satisfies YYT = zz! (exact recovery)

=3 > 4

j~i

S CpAZ’




Back to complete graph with Gaussian noise

Our previous results required

fo~||AnzZN72 Vi< oS

In the Z, case, we need

n

n=2; 2 [[Allg, + max [—Zz' > yh,

1<i<n ~i
& v/no + on/nlogn

Recovers rate of Ling (2023a), however, working out the constants shows that

/ n
<\
7= (2+€)logn

is the correct condition: this is optimal for exact recovery (Bandeira, 2018)

= oS .
logn



More optimal Z, sync results

Our result also approaches optimal exact recovery thresholds for other benchmark problems:
» Erdés—Rényi random graph with Bernoulli noise (“signed” or “correlation” clustering)

» Ordinary graph clustering with stochastic block model (Ling (2023a) again came within a
constant)
Previously shown for SDP relaxation (Bandeira, 2018; Hajek et al., 2016a; Hajek et al.,
2016b)



Summary

Group synchronization on graph

Z, sync/graph clustering

We analyze the landscape of nonconvex QCQPs of the form

C,YYTY st blkdiag(YY") =1
yomax o ) s iag(YY") =1,

with data from an O(r) synchronization problem.

P> Benign nonconvex landscape results on a general graph

» Stronger (optimal) results and exact recovery in O(1) = Z, case
Future work: Improved conditions for general graphs and r = 2

» For example, by leave-one-out analysis like Ling (2022) and Ling (2023a)
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