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Motivation: the synchronization of rotations problem
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Goal: estimate each node’s angle from relative angles on edges

▶ Many applications in robotics, computer vision, signal processing…



3/15

General problem: orthogonal group synchronization on graph
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R ≈ 110°

▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Each node 𝑖 has associated 𝑟 × 𝑟 orthogonal matrix 𝑍𝑖 (𝑍𝑖𝑍𝑇

𝑖 = 𝐼𝑟)
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
▶ Goal: estimate 𝑍1, … , 𝑍𝑛
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Optimization problem

Setup:
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R ≈ 110°

▶ Graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = {1, … , 𝑛}
▶ Want to estimate orthogonal matrices 𝑍1, … , 𝑍𝑛
▶ Observed data: 𝑅𝑖𝑗 ≈ 𝑍𝑖𝑍𝑇

𝑗 for (𝑖, 𝑗) ∈ 𝐸
Least-squares/maximum likelihood estimator:

max
𝑌𝑖∈R𝑟×𝑟 ∑

(𝑖,𝑗)∈𝐸
⟨𝑅𝑖𝑗, 𝑌𝑖𝑌𝑇

𝑗 ⟩ s.t. 𝑌𝑖𝑌𝑇
𝑖 = 𝐼𝑟, 𝑖 = 1, … , 𝑛

QCQP form: max
𝑌∈R𝑟𝑛×𝑟

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag⏟⏟⏟
𝑛 diag. 𝑟×𝑟 blks

(𝑌𝑌𝑇) = 𝐼𝑟𝑛

Nonconvex and in general has bad local optima.

▶ 𝑟 = 1 is max-cut–type problem (NP-hard in general)

▶ What does problem structure buy us?
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Relaxations

Original problem (can have bad local minima):

max
𝑌∈R𝑟𝑛×𝑟

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛

Semidefinite relaxation (SDP):

max
𝑋∈R𝑟𝑛×𝑟𝑛

⟨𝐶, 𝑋⟩ s.t. blkdiag(𝑋) = 𝐼𝑟𝑛, 𝑋 ⪰ 0.

Convex (no bad local minima) but expensive if 𝑛 is large.

Our approach

Intermediate relaxation: for 𝑝 > 𝑟:

max
𝑌∈R𝑟𝑛×𝒑

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛

▶ Burer-Monteiro factorization of SDP

▶ Empirically successful in robotics literature (e.g., Rosen et al., 2019; Dellaert et al., 2020)

▶ Can we understand its performance theoretically?
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Landscapes landscape

Focus on simplest case 𝑟 = 1: when does

max
𝑌∈R𝑛×𝒑

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. diag(𝑌𝑌𝑇) = 𝐼𝑛

(not) have bad local minima?

The answer depends on 𝑝 and the cost matrix 𝐶:

1 𝑶(𝟏) ≈ √2𝑛 𝑛

2
𝑛

Structure

matters

“Generically” benign;

bad cases exist1 Always benign1

Combinatorial opt. over {±1}𝑛

This work: benign under structural assumptions on 𝐶

≃ SDP

𝑝

1Boumal et al. (2019) and O’Carroll et al. (2022)
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Main result

Theorem

Suppose
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R ≈ 110°

▶ Connected measurement graph 𝐺 on 1, … , 𝑛 with edges 𝐸.
▶ Graph Laplacian matrix has second-smallest eigenvalue 𝜆2 > 0

▶ We observe 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑇
𝑗 + Δ𝑖𝑗 ∈ R𝑟×𝑟, (𝑖, 𝑗) ∈ 𝐸.

▶ 𝑝 ≥ 𝑟 + 3, and we solve

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛, 𝐶𝑖𝑗 = 𝑅𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐸

If ‖𝜟‖ℓ𝟐
≤ 𝑪𝒑,𝒓

𝝀𝟐
√𝒏

, any second-order critical point 𝑌 satisfies 𝑌𝑌𝑇 = 𝑍𝑍𝑇, where 𝑍 ∈ O(𝑟)𝑛

is a global optimum to the original (unrelaxed) problem.

▶ Prior results for complete graph: we extend* to general graphs

▶ Noiseless case (“Kuramoto oscillator” sync.): 𝑝 ≥ 𝑟 + 2 suffices

▶ Optimal; previous best known condition 2𝑝 ≥ 3(𝑟 + 1) (Markdahl, 2021)
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Proof ideas

Goal: show global optimality of critical points of

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛 (1)

Optimization over product of Stiefel manifolds.

Critical points 𝑌 of (1): setting 𝑆(𝑌) = symblkdiag(𝐶𝑌𝑌𝑇) − 𝐶
▶ First-order: 𝑆(𝑌)𝑌 = 0 (Riemannian gradient is zero)

▶ Second-order: for any tangent vector �̇�, ⟨𝑆(𝑌), �̇��̇�𝑇⟩ ≥ 0 (Riemannian Hessian ⪯ 0)
Using these to prove optimality is an art and depends on the problem structure (particularly

choosing �̇� in second-order condition)

Key innovations:

▶ A new randomized �̇� to plug into second-order inequality

▶ Study Laplacian of general graph (instead of complete-graph adjacency matrix)
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Limitation: poor dimension scaling

Simple example

▶ Complete graph (𝜆2 = 𝑛)
▶ Gaussian noise (entries of Δ are i.i.d. 𝒩(0, 𝜎2))

Our theorem requires

√𝑛𝜎 ≈ ‖Δ‖ℓ2
≲

𝜆2
√𝑛 = √𝑛 ⟺ 𝜎 ≲ 1

Previous results for complete-graph case:

▶ 𝜎 ≲ 𝑛1/4 suffices by similar but more specialized arguments (Ling, 2023b)

▶ 𝜎 ≲ √
𝑛

log 𝑛
suffices by involved “leave-one-out” analysis (Ling, 2022; Ling, 2023a)

Our results for general graphs scale poorly with the problem size 𝑛 in some cases

▶ How can they be improved?
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Specialization to 𝑟 = 1: Z2 synchronization

The orthogonal group O(𝑟) becomes discrete when 𝑟 = 1:

O(1) = {±1} = Z2

No longer “rotations” but closely linked to graph clustering

Even with noise, exact recovery becomes feasible

▶ Can we improve our results with this?
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Stronger results for Z2 sync.

Theorem

Suppose 𝑧1, … , 𝑧𝑛 ∈ {±1}, and
▶ We observe 𝑅𝑖𝑗 = 𝑧𝑖𝑧𝑗 + Δ𝑖𝑗 ∈ R, (𝑖, 𝑗) ∈ 𝐸.
▶ 𝑝 ≥ 4, and we solve the rank-relaxed problem

max
𝑌∈R𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. diag(𝑌𝑌𝑇) = 𝐼𝑛, 𝐶𝑖𝑗 = 𝑅𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐸.

Then, if

𝐶𝑝‖Δ
↑

no √𝑛

‖ℓ2
+ max

1≤𝑖≤𝑛
[−𝑧𝑖 ∑

𝑗∼𝑖
𝑧𝑗Δ𝑖𝑗] ≤ 𝑐𝑝𝜆2,

any second-order critical point 𝑌 satisfies 𝑌𝑌𝑇 = 𝑧𝑧𝑇 (exact recovery)
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Back to complete graph with Gaussian noise

Our previous results required

√𝑛𝜎 ≈ ‖Δ‖ℓ2
≲

𝜆2
√𝑛 = √𝑛 ⟺ 𝜎 ≲ 1

In the Z2 case, we need

𝑛 = 𝜆2 ≳ ‖Δ‖ℓ2
+ max

1≤𝑖≤𝑛
[−𝑧𝑖 ∑

𝑗∼𝑖
𝑧𝑗Δ𝑖𝑗]

≈ √𝑛𝜎 + 𝜎√𝑛 log 𝑛

⟺ 𝜎 ≲ √
𝑛

log 𝑛.

Recovers rate of Ling (2023a), however, working out the constants shows that

𝜎 ≤ √
𝑛

(2 + 𝜖) log 𝑛

is the correct condition: this is optimal for exact recovery (Bandeira, 2018)
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More optimal Z2 sync results

Our result also approaches optimal exact recovery thresholds for other benchmark problems:

▶ Erdős–Rényi random graph with Bernoulli noise (“signed” or “correlation” clustering)

▶ Ordinary graph clustering with stochastic block model (Ling (2023a) again came within a

constant)

Previously shown for SDP relaxation (Bandeira, 2018; Hajek et al., 2016a; Hajek et al.,

2016b)
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Summary
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Group synchronization on graph Z2 sync/graph clustering

We analyze the landscape of nonconvex QCQPs of the form

max
𝑌∈R𝑟𝑛×𝑝

⟨𝐶, 𝑌𝑌𝑇⟩ s.t. blkdiag(𝑌𝑌𝑇) = 𝐼𝑟𝑛

with data from an O(𝑟) synchronization problem.

▶ Benign nonconvex landscape results on a general graph

▶ Stronger (optimal) results and exact recovery in O(1) = Z2 case

Future work: Improved conditions for general graphs and 𝑟 ≥ 2
▶ For example, by leave-one-out analysis like Ling (2022) and Ling (2023a)
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