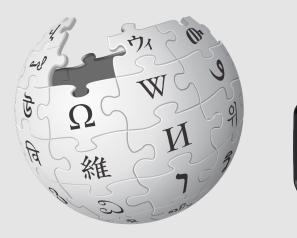
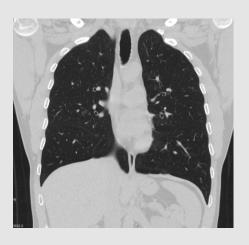
Andrew D. McRae, Justin Romberg, Mark Davenport School of Electrical and Computer Engineering, Georgia Tech

The problem

In many modern real-world tasks, the data are very high-dimensional.

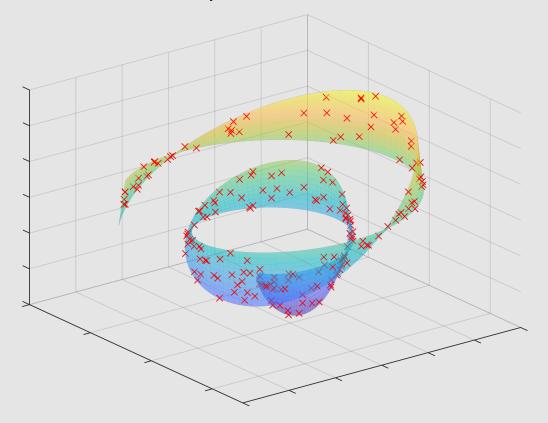




Traditional learning theory says that the number of samples needed to learn a Another model is the space of Ω -bandlimited functions with its associated function in d dimensions grows **exponentially** in d... reproducing kernel:

Manifold models

A common model is that all of the data lie on a low-dimensional manifold embedded in higher-dimensional space.



Question: If manifold dimension $m \ll$ ambient dimension d, can we get away with only using $O(C^m)$ data points instead of $O(C^d)$?

Key tool: spectral analysis of manifolds

We analyze functions on \mathcal{M} via the spectral decomposition of the (positive semidefinite) Laplace differential operator $\Delta_{\mathcal{M}}$:

$$\Delta_{\mathcal{M}} f = \sum_{\ell=0}^{\infty} \omega_{\ell}^2 \langle f, v_{\ell} \rangle_{L_2} v_{\ell}.$$

Each v_{ℓ} is a vibrating mode of \mathcal{M} , and ω_{ℓ} is the corresponding vibrational frequency.

Modes of a vibrating string (1-d manifold) Modes of a vibrating drum (2-d manifold) The Weyl law from differential geometry says that, asymptotically,

 $|\{\ell : \omega_{\ell} \leq \Omega\}| \sim c_m \operatorname{vol}(\mathcal{M}) \Omega^m \text{ as } \Omega \to \infty,$

where c_m is a dimension-dependent constant.

Function spaces of spectral kernels

One model space of very smooth functions on $\mathcal M$ is "diffusion space"

$$\mathcal{H}_t^{\mathsf{h}} = \left\{ f : \|f\|_{\mathcal{H}_t^{\mathsf{h}}}^2 \coloneqq \sum_{\ell} e^{\omega_{\ell}^2 t/2} \langle f, \mathsf{v}_{\ell} \rangle_{L_2}^2 < \infty \right\}$$

for t > 0, whose reproducing kernel is the heat kernel

$$k_t^{\mathsf{h}}(x, y) = \sum_{\ell} e^{-\omega_{\ell}^2 t/2} v_{\ell}(x) v_{\ell}(y)$$

$$\mathcal{H}_{\Omega}^{\mathsf{bl}} = \operatorname{span}\{v_{\ell} : \omega_{\ell} \leq \Omega\}, \ k_{\Omega}^{\mathsf{bl}}(x, y) = \sum_{\ell:\omega_{\ell} \leq \Omega} v_{\ell}(x)v_{\ell}(y).$$

Heat kernel k_t^h on sphere

Algorithm: kernel regression (a.k.a. regularized empirical risk minimization)

Given *n* observations of the form $Y_i = f^*(X_i) + \xi_i$, where f^* is the function we want to learn and ξ_i is noise, our estimators have the form

$$\widehat{f} = \underset{f \in \mathcal{H}}{\operatorname{arg min}} \quad \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \alpha ||f||_{\mathcal{H}}^2,$$

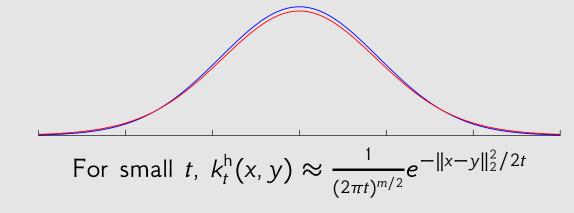
where \mathcal{H} is either \mathcal{H}_t^h or $\mathcal{H}_{\Omega}^{bl}$, and $\|\cdot\|_{\mathcal{H}_{\Omega}^{bl}}$ is the L_2 norm.

By the kernel trick, \hat{f} has a simple form in terms of the kernel function (k_t^h or k_{Ω}^{bl}) and the data.

Analysis/proof techniques

Bounding $|\{\ell : \omega_{\ell} \leq \Omega\}|$:

▶ Derived from bound on heat kernel k_t^h for very small t via stochastic calculus



Learning theory result:

- Standard ERM argument with finite-dimensional approximations
- \blacktriangleright Concentration inequalities on sums of random operators in L_2 and \mathcal{H}

If \mathcal{M} has bounded curvature, then, for large enough Ω ,

(same error as bandlimited case plus small residual due to error of finite-dimensional approximation). 3. These error bounds are minimax-optimal.

Key takeaways

1. Sample complexity and error due to noise scale like Ω^m : difficulty scales with manifold dimension m, not ambient dimension d

Main result #1: nonasymptotic complexity

$$\{\ell : \omega_{\ell} \leq \Omega\} | \leq C_m \operatorname{vol}(\mathcal{M}) \Omega^m.$$

rst **nonasymptotic** upper bound on bandlimited function space dimension Lets us estimate complexity of estimation of very smooth functions

Main result **#2**: learning theory bounds

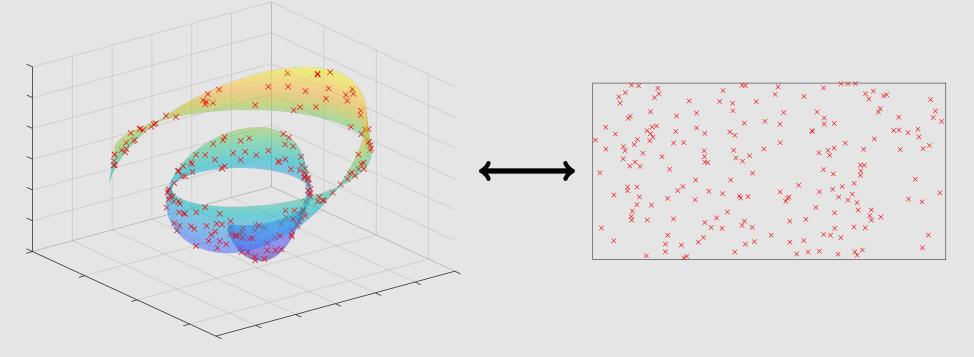
Let $p(\Omega) := C_m \operatorname{vol}(\mathcal{M})\Omega^m$. Suppose we observe $n \geq p(\Omega) \log p(\Omega)$ i.i.d. samples of the form $Y_i = f^*(X_i) + \xi_i$, where X_i is distributed uniformly at random over \mathcal{M} , and ξ_i is independent noise with variance σ^2 .

1. If the true regression function $f^* \in \mathcal{H}_{\Omega}^{bl}$, and we perform kernel regression with k_{Ω}^{bl} , then

$$\|\widehat{f} - f^*\|_{L_2}^2 \lesssim \frac{p(\Omega)}{n} \sigma^2.$$

2. If $f^* \in \mathcal{H}_t^h$, and we perform kernel regression with k_t^h , then

$$\|\hat{f} - f^*\|_{L_2}^2 \lesssim \frac{p(\Omega)}{n} \sigma^2 + e^{-\Omega^2 t/2} \|f^*\|_{\mathcal{H}_t^h}^2$$



Same complexity on 2-d manifold as in \mathbf{R}^2 !

2. Very smooth function spaces have (almost) parametric error rates \triangleright Since the space $\mathcal{H}_{\Omega}^{\mathsf{bl}}$ of Ω -bandlimited functions is finite-dimensional, we get parametric rate n^{-1} with dimension $p(\Omega)$

 \triangleright For \mathcal{H}_t^h , optimizing Ω gives almost-parametric error rate $\frac{\log^{m/2} n}{2}$ \triangleright By comparison, standard nonparametric rate for functions that are only s-differentiable is $n^{-2s/(m+2s)}$