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The problem Function spaces of spectral kernels

In many modern real-world tasks, the data are very high-dimensional.
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Traditional learning theory says that the number of samples needed to learn a

function in d dimensions grows exponentially in d...

Manifold models

A common model is that all of the data lie on a low-dimensional manifold

embedded in higher-dimensional space.

Question: If manifold dimension m << ambient dimension d, can we get away
with only using O(C™) data points instead of O(C%)?

Key tool: spectral analysis of manifolds

We analyze functions on M via the spectral decomposition of the (positive
semidefinite) Laplace differential operator A y:
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Each v, is a vibrating mode of M, and w, is the corresponding vibrational

frequency.

Modes of a vibrating drum (2-d manifold)

Modes of a vibrating string (1-d manifold)
The Weyl law from differential geometry says that, asymptotically,

:w) <QY ~ c.,vol(M)Q™ as Q — oo,
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where ¢, is a dimension-dependent constant.

One model space of very smooth functions on M is “diffusion space”
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for t > 0O, whose reproducing kernel is the heat kernel
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Another model is the space of (-bandlimited functions with its associated

reproducing kernel:
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Heat kernel K on sphere Bandlimited kernel k3 on sphere

Algorithm: kernel regression (a.k.a. regularized empirical risk minimization)

Given n observations of the form Y; = f*(X;) 4+ &;, where f* is the function we
want to learn and ¢§; is noise, our estimators have the form
1 n

f = arg min — Z(Yl — f(Xz’»Z T a”f”c%'-f
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where ¢H is either a’-l? or d—fg and ||-||0,_fb| is the L, norm.
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By the kernel trick, f has a simple form in terms of the kernel function (k;‘ or
k2) and the data.

Analysis/proof techniques

Bounding [{£ : e, < Q}]:
» Derived from bound on heat kernel kp for very small t via stochastic

calculus

L o= lx=yli5/2
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For small t, k?(x, y) ~

Learning theory result:
» Standard ERM argument with finite-dimensional approximations

» Concentration inequalities on sums of random operators in L, and ¢+

Main result #1: nonasymptotic complexity

If )M has bounded curvature, then, for large enough £,
{2 : @, < QY| < C,, vol(M)Q™.

» First nonasymptotic upper bound on bandlimited function space dimension

» Lets us estimate complexity of estimation of very smooth functions

Main result #2: learning theory bounds

Let p(Q) :== C_ vol(M)Q™.
samples of the form Y, = f*(X;) + &, where X; is distributed uniformly at

Suppose we observe n = p(Q2)logp(Q2) i.i.d.
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random over M, and ¢; is independent noise with variance o2,

| . If the true regression function f~ & d—l?zl and we perform kernel regression

with kg, then
p(L2)
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2. If ff e d—f? and we perform kernel regression with kD, then

r * ID(Q) —Q? *
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(same error as bandlimited case plus small residual due to error of
finite-dimensional approximation).

3. These error bounds are minimax-optimal.

Key takeaways

|. Sample complexity and error due to noise scale like Q™: difficulty scales
with manifold dimension m, not ambient dimension d

Same complexity on 2-d manifold as in R

2. Very smooth function spaces have (almost) parametric error rates
> Since the space d—fgl of Q2-bandlimited functions is finite-dimensional, we

get parametric rate n~! with dimension p(2)
Iogm/2 n

For a’-f? optimizing {2 gives almost-parametric error rate
n

By comparison, standard nonparametric rate for functions that are only
—2s/(m+2s)
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