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The problem

In many modern real-world tasks, the data are very high-dimensional.

Traditional learning theory says that the number of samples needed to learn a

function in 𝑑 dimensions grows exponentially in 𝑑…

Manifold models

A common model is that all of the data lie on a low-dimensional manifold
embedded in higher-dimensional space.

Question: If manifold dimension 𝑚 ≪ ambient dimension 𝑑, can we get away

with only using 𝑂(𝐶 𝑚) data points instead of 𝑂(𝐶 𝑑)?

Key tool: spectral analysis of manifolds

We analyze functions on ℳ via the spectral decomposition of the (positive

semidefinite) Laplace differential operator Δℳ:

Δℳ𝑓 =
∞
∑
ℓ=0

𝜔2
ℓ ⟨𝑓, 𝑣ℓ⟩𝐿2

𝑣ℓ.

Each 𝑣ℓ is a vibrating mode of ℳ, and 𝜔ℓ is the corresponding vibrational

frequency.

Modes of a vibrating string (1-d manifold) Modes of a vibrating drum (2-d manifold)

The Weyl law from differential geometry says that, asymptotically,

∣{ℓ ∶ 𝜔ℓ ≤ Ω}∣ ∼ 𝑐𝑚 vol(ℳ) Ω𝑚 as Ω → ∞,

where 𝑐𝑚 is a dimension-dependent constant.

Function spaces of spectral kernels

One model space of very smooth functions on ℳ is “diffusion space”

ℋh
𝑡 = {𝑓 ∶ ‖𝑓‖2

ℋh
𝑡

≔ ∑
ℓ

𝑒𝜔2
ℓ 𝑡/2⟨𝑓, 𝑣ℓ⟩2

𝐿2
< ∞}

for 𝑡 > 0, whose reproducing kernel is the heat kernel

𝑘h𝑡 (𝑥, 𝑦) = ∑
ℓ

𝑒−𝜔2
ℓ 𝑡/2𝑣ℓ(𝑥)𝑣ℓ(𝑦).

Another model is the space of Ω-bandlimited functions with its associated

reproducing kernel:

ℋbl
Ω = span{𝑣ℓ ∶ 𝜔ℓ ≤ Ω}, 𝑘blΩ(𝑥, 𝑦) = ∑

ℓ∶𝜔ℓ≤Ω
𝑣ℓ(𝑥)𝑣ℓ(𝑦).

Heat kernel 𝑘h𝑡 on sphere Bandlimited kernel 𝑘blΩ on sphere

Algorithm: kernel regression (a.k.a. regularized empirical risk minimization)

Given 𝑛 observations of the form 𝑌𝑖 = 𝑓∗(𝑋𝑖) + 𝜉𝑖, where 𝑓∗ is the function we

want to learn and 𝜉𝑖 is noise, our estimators have the form

𝑓 = arg min
𝑓∈ℋ

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑖))2 + 𝛼‖𝑓‖2
ℋ,

where ℋ is either ℋh
𝑡 or ℋbl

Ω, and ‖⋅‖ℋbl
Ω
is the 𝐿2 norm.

By the kernel trick, 𝑓 has a simple form in terms of the kernel function (𝑘h𝑡 or

𝑘blΩ) and the data.

Analysis/proof techniques

Bounding ∣{ℓ ∶ 𝜔ℓ ≤ Ω}∣:
▶ Derived from bound on heat kernel 𝑘h𝑡 for very small 𝑡 via stochastic

calculus

For small 𝑡, 𝑘h𝑡 (𝑥, 𝑦) ≈ 1

(2𝜋𝑡)𝑚/2
𝑒−‖𝑥−𝑦‖2

2/2𝑡

Learning theory result:

▶ Standard ERM argument with finite-dimensional approximations

▶ Concentration inequalities on sums of random operators in 𝐿2 and ℋ

Main result #1: nonasymptotic complexity

If ℳ has bounded curvature, then, for large enough Ω,

∣{ℓ ∶ 𝜔ℓ ≤ Ω}∣ ≤ 𝐶𝑚 vol(ℳ)Ω𝑚.

▶ First nonasymptotic upper bound on bandlimited function space dimension

▶ Lets us estimate complexity of estimation of very smooth functions

Main result #2: learning theory bounds

Let 𝑝(Ω) ≔ 𝐶𝑚 vol(ℳ)Ω𝑚. Suppose we observe 𝑛 ≳ 𝑝(Ω) log𝑝(Ω) i.i.d.

samples of the form 𝑌𝑖 = 𝑓∗(𝑋𝑖) + 𝜉𝑖, where 𝑋𝑖 is distributed uniformly at

random over ℳ, and 𝜉𝑖 is independent noise with variance 𝜎2.

1. If the true regression function 𝑓∗ ∈ ℋbl
Ω, and we perform kernel regression

with 𝑘blΩ , then

‖𝑓 − 𝑓∗‖2
𝐿2

≲
𝑝(Ω)

𝑛 𝜎2.

2. If 𝑓∗ ∈ ℋh
𝑡 , and we perform kernel regression with 𝑘h𝑡 , then

‖𝑓 − 𝑓∗‖2
𝐿2

≲
𝑝(Ω)

𝑛 𝜎2 + 𝑒−Ω2𝑡/2‖𝑓∗‖2
ℋh

𝑡

(same error as bandlimited case plus small residual due to error of

finite-dimensional approximation).

3. These error bounds are minimax-optimal.

Key takeaways

1. Sample complexity and error due to noise scale like Ω𝑚: difficulty scales
with manifold dimension 𝑚, not ambient dimension 𝑑

Same complexity on 2-d manifold as in R2!

2. Very smooth function spaces have (almost) parametric error rates

▷ Since the space ℋbl
Ω of Ω-bandlimited functions is finite-dimensional, we

get parametric rate 𝑛−1 with dimension 𝑝(Ω)

▷ For ℋh
𝑡 , optimizing Ω gives almost-parametric error rate

log𝑚/2 𝑛
𝑛

▷ By comparison, standard nonparametric rate for functions that are only

𝑠-differentiable is 𝑛−2𝑠/(𝑚+2𝑠)


