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Abstract

This poster presents novel analysis and algorithms for
solving sparse phase retrieval and sparse principal com-
ponent analysis (PCA) with nonsmooth convex lifted matrix
formulations. The key innovation is a new atomic matrix
norm that, when used as regularization, promotes low-rank
matrices with sparse factors. We show that convex pro-
grams with this atomic norm as a regularizer provide near-
optimal sample complexity and error rate guarantees for
sparse phase retrieval and sparse PCA. Although we do
not know efficient algorithms for the convex programs, for
the phase retrieval case we carefully analyze the program
and its dual and thereby derive a practical heuristic non-
convex algorithm. We show empirically that this noncon-
vex algorithm performs similarly to existing state-of-the-art
sparse phase retrieval algorithms. Based on joint work with
Justin Romberg and Mark Davenport, published in [1].

Statistical motivation and theory

General application: in a high-dimensional statistics set-
ting, estimate a rank-1 matrix B∗ = u∗v⊤∗ whose factors
u∗, v∗ are sparse (more generally, B∗ could be low-rank with
sparse factors).

Algorithmic goal: find a (convex) matrix norm that pro-
motes this sparse and low-rank structure.

Challenge: simultaneous structure of B∗. B∗ is not merely
both sparse and low-rank; the factors of its low-rank decom-
position are themselves sparse.

Low rank is often promoted with the nuclear norm:

∥B∥∗ = min
{∑

∥uk∥2∥vk∥2 : B =
∑

ukv
⊤
k

}
.

However, this does not account for sparsity. Matrix sparsity
can be promoted with the (elementwise) ℓ1 norm:

∥B∥1 =
∑
i,j

= |Bij|

= min
{∑

∥uk∥1∥vk∥1 : B =
∑

ukv
⊤
k

}
.

However, the elementwise ℓ1 norm does not account for low
rank. Simply combining these norms does not work [2], [3].

New mixed atomic norm: we “mix” the nuclear and ℓ1
norms into the following atomic norm:

∥B∥∗,γ := min
{∑

θγ(uk, vk) : B =
∑

ukv
⊤
k

}
, where

θγ(u, v) := (∥u∥2 + γ∥u∥1)(∥v∥2 + γ∥v∥1).

γ > 0 is a parameter that controls the relative strength of
the nuclear and ℓ1 norm components.

Application: sparse phase retrieval. Suppose β∗ ∈ Rd is
sparse, and we observe

yi = ⟨xi, β∗⟩2 + ξi = ⟨Xi, B∗⟩ + ξi, i = 1, . . . , n

where B∗ := β∗β⊤∗ , and Xi := xix
⊤
i . We estimate B∗ by

B̂ = arg min
B⪰0

1

2n

n∑
i=1

(yi − ⟨Xi, B⟩)2 + λ∥B∥∗,γ.

Theorem 1 (Simplified) If β is s-sparse, the measure-
ments xi

i.i.d.∼ N (0, Id), the noise ξi is i.i.d. zero-mean and
bounded, and λ, γ are chosen appropriately, then, if n ≳
s log d

s,

∥B̂ −B∗∥2F ≲
s log(d/s)

n
.

The sample complexity and error rate are optimal (possibly
modulo the log factor).

Application: sparse PCA. Suppose we observe
x1, . . . , xn

i.i.d.∼ N (0,Σ), where Σ ∈ Rd×d has a sparse lead-
ing eigenvector v1. We can estimate P∗ := v1v

⊤
1 with the

following convex program:

P̂ = arg min
P⪰0

−⟨P, Σ̂⟩ + λ∥P∥∗,γ s.t. tr(P ) ≤ 1,

where Σ̂ is the empirical covariance.

Theorem 2 If v1 is s-sparse, and λ, γ are appropriately cho-
sen, then, if n ≳ s log d

s,

∥P̂ − P∗∥2F ≲
σ1σ2

(σ1 − σ2)2
s log(d/s)

n
,

where σ1, σ2 are the top two eigenvalues of Σ.

Again, the sample complexity and error rate are optimal
modulo log factors.

General nonsmooth problem

Consider the following convex matrix program (the statis-
tical estimators are special cases):

min
B∈C

f (B) + ∥B∥∗,γ, (1)

where C ⊆ Rd1×d2 is convex, f is smooth and convex, γ > 0,

∥B∥∗,γ := min
{∑

θγ(uk, vk) : B =
∑

ukv
⊤
k

}
, and

θγ(u, v) := (∥u∥2 + γ∥u∥1)(∥v∥2 + γ∥v∥1).

Although (1) is convex, it is unclear even how to evaluate
(let alone optimize) the atomic norm component ∥B∥∗,γ.

In fact, the sparse PCA performance achieved by Theo-
rem 2 is widely believed to be impossible with polynomial-
time estimators [4]. If this is true, then, in general, (1) is
computationally intractable. Nevertheless, some specific
instances may be tractable.

Nonconvex formulation: The convex problem (1) is equiv-
alent to

min
{
f (UV ⊤) + θγ(U, V ) :

r ≥ 1, U ∈ Rd1×r, V ∈ Rd2×r, UV ⊤ ∈ C
}
,

(2)

where, if U = [u1, . . . , ur], V = [v1, . . . , vr], we abbreviate
θγ(U, V ) =

∑r
k=1 θγ(uk, vk).

In practice, we optimize U and V directly for fixed r and
then update r. This approach is explored abstractly in [5].
In our case, the structure of θγ makes (2) amenable to prox-
imal methods.

Algorithm for phase retrieval

We consider the following instance of (2):

min
r

U,V ∈Rd×r

1

2n

n∑
i=1

(yi − ⟨Xi, UV ⊤⟩)2 + λθγ(U, V ). (3)

(Enforcing symmetry appears unnecessary in practice, and
the asymmetric version is conveniently amenable to alter-
nating minimization. Why this works is an open question.)

Optimality conditions: How do we check optimality of a
candidate solution B = UV ⊤? Let

Z := −∇f (B) =
1

n

n∑
i=1

(yi − ⟨Xi, B⟩HS)Xi.

B is a global optimum if and only if the following two condi-
tions hold:

• First-order criticality: ⟨Z, ukv⊤k ⟩ = λθγ(uk, vk) for k =
1, . . . , r.

• Second-order criticality: ⟨Z, uv⊤⟩ ≤ λθγ(u, v) for all
u, v ∈ Rd. Any pair (u, v) violating this condition yields
a descent direction if we add u and v (scaled sufficiently
small) as additional columns to U and V .

This suggests the following meta-algorithm (adapted
from [5]):

Algorithm 1: Sparse phase retrieval algorithm
input : Data (Xi, yi), i = 1, . . . , n
output: Solution (r, U, V ) to (3)
Initialize r ← r01

Initialize U, V (e.g., a spectral algorithm)2

while not Converged do3

Optimize (3) over U, V until first-order critical4

if (U, V ) also second-order critical then5

Converged← true6

else7

r ← r + 18

Set (ur+1, vr+1) to be a descent direction9

endif10

endw11

How does this work in practice?

• First-order criticality is easily verified and easily reached
via a local algorithm (e.g., proximal gradient descent or
alternating minimization).

• It is likely computationally intractable to verify second-
order criticality or find a descent direction. For a practical
algorithm, we must use a heuristic. In [1], we search for
a descent direction over one-sparse vectors.

Empirical results

In simulation, Algorithm 1 with alternating minimization
and the one-sparse heuristic achieves sample-complexity
performance in line with Theorem 1 and comparable to
other SOTA practical algorithms (see [1] for comparisons).
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Figure 1: Error phase diagram (dark = high error, light =
low error) of sample size n vs. sparsity s. The required n is
(approximately) linear in s, agreeing with Theorem 1.

Open questions/directions

• Why does our heuristic algorithm work well in practice
for sparse phase retrieval? Can we prove a theoretical
guarantee (thus proving that sparse phase retrieval has
no statistical-computational gap)?

• How does problem structure affect practical solvabil-
ity (e.g., in comparison with sparse PCA)? What other
problems are amenable to such practical algorithms?

• What is the nonsmooth nonconvex landscape of (2)
and (3)? Is it somehow “benign” for certain problems?
What theoretical implications would this have for practi-
cal local algorithms?

• How do we best deal with symmetry (e.g., in phase
retrieval)? What are the statistical and algorithmic
(dis)advantages of enforcing it?
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