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Statistical problem

We want to recover a low-rank positive semidefinite (PSD) 𝑑×𝑑 matrix 𝑍∗ ⪰ 0
from measurements

𝑦𝑖 ≈ ⟨𝐴𝑖, 𝑍∗⟩, 𝑖 = 1, … , 𝑛,
where 𝐴1, … , 𝐴𝑛 ⪰ 0 are 𝑑 × 𝑑 PSD sensing matrices.

Canonical example: phase retrieval, where

𝑍∗ = 𝑥∗𝑥∗
∗ , and 𝐴𝑖 = 𝑎𝑖𝑎∗

𝑖

for vectors 𝑥∗ ∈ F𝑑 (F could be R or C) and 𝑎1, … , 𝑎𝑛 ∈ C𝑑 (in general).

Nonconvex least-squares estimator

We estimate 𝑍∗ by the Burer-Monteiro factored least-squared problem

min
𝑋∈F𝑑×𝑝

𝑛
∑
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋𝑋 ∗⟩)2 (BM-LS)

where 𝑝 is a search rank hyperparameter.

For phase retrieval with the obvious choice of 𝑝 = 1, this becomes the classic

quartic problem

min
𝑥∈F𝑑

𝑛
∑
𝑖=1

(𝑦𝑖 − |⟨𝑎𝑖, 𝑥⟩|2)2. (PR-LS)

These objective functions are smooth (quartic polynomials) but nonconvex,

hence they potentially could have spurious local optima.

We want to understand the nonconvex landscape of (BM-LS). Can we show

that all local minima are global or are at least good statistical estimators?

Prior work and its limitations

There is much existing work on landscapes of problems like (BM-LS) in

low-rank matrix sensing, but it generally assumes a restricted isometry property
(RIP): this requires that, for all low-rank Hermitian 𝑆,

𝛼‖𝑆‖2
F ≤ 1

𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝑆⟩2 ≤ 𝛽‖𝑆‖2
F (RIP)

for 𝛼, 𝛽 > 0 with sufficiently small ratio 𝛽/𝛼.
For phase retrieval, RIP fails: in general (e.g., with Gaussian measurements),

we have
𝛽
𝛼 ≳ 𝑑2

𝑛 ,
which is far too large without unreasonably large sample size 𝑛. Thus another

approach is needed.

By more problem-specific methods, the phase retrieval problem (PR-LS) has

been studied and shown to have a benign landscape when the 𝑎𝑖’s are Gaussian
and 𝑛 ≳ 𝑑 log 𝑑 [Cai+23]. However, the sample complexity requirement is

suboptimal, and the analysis depends on the fact that the measurements are

Gaussian.

New analysis and overparametrization

▶ We develop a novel landscape analysis that is inspired by but greatly

extends existing techniques for phase retrieval.

▶ As in other recent works on low-rank matrix sensing and synchronization,

we benefit from overparametrization: setting search rank 𝑝 > rank(𝑍∗).
▶ Our analysis exploits the positive semidefinite structure (that both 𝑍∗

and the measurements 𝐴𝑖 are PSD).

Deterministic landscape result (rank-1, noiseless)

Theorem 1. Suppose 𝑍∗ = 𝑥∗𝑥∗
∗ has rank 1, and suppose we observe

𝑦𝑖 = ⟨𝐴𝑖, 𝑍∗⟩ for 𝐴1, … , 𝐴𝑛 ⪰ 0.

Furthermore, suppose the measurements {𝐴𝑖} satisfy, for some 𝛼, 𝐿 > 0,
1
𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝑋𝑋 ∗ − 𝑍∗⟩2 ≥ 𝛼‖𝑋𝑋 ∗ − 𝑍∗‖2
F ∀𝑋 ∈ F𝑑×𝑝, and

∥
1
𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝑍∗⟩𝐴𝑖∥
op

≤ 𝐿‖𝑥∗‖2.

Finally, suppose the rank parameter 𝑝 satisfies

𝑝 + 2 > 2𝐿
𝛼 .

Then every second-order critical point 𝑋 of (BM-LS) satisfies 𝑋𝑋 ∗ = 𝑍∗.

▶ This can be extended to 𝑍∗ of larger rank (see Theorem 3).

▶ Lower isometry requirement is similar to RIP; upper isometry only

required on a restricted space.

▶ A refined version recovers the result of [Cai+23] for (PR-LS) with

Gaussian measurements (see preprint).

▶ A larger search rank 𝑝 allows looser assumptions on {𝐴𝑖}. Or does it?

Challenge: universal lower isometry bound

To get the full benefits of overparametrization with Theorem 1, we want a

lower isometry bound independent of the search rank 𝑝:
1
𝑛

𝑛
∑
𝑖=1

⟨𝐴𝑖, 𝑍 − 𝑍∗⟩2 ≥ 𝛼‖𝑋𝑋 ∗ − 𝑍∗‖2
F ∀𝑍 ⪰ 0.

For general low-rank matrix sensing, this is impossible unless 𝑛 ≳ 𝑑2. However,

the PSD structure lets us do more.

Intuitively, we can build on the observation in the PhaseLift literature (e.g.,

[CL13]) that, in many cases,

{𝑍 ⪰ 0 ∶ ⟨𝐴𝑖, 𝑍⟩ = ⟨𝐴𝑖, 𝑍∗⟩, 𝑖 = 1, … , 𝑛} = {𝑍∗}.

Some applications

To apply Theorem 1 with a universal (𝑝-independent) lower isometry bound,

we build on two existing methods in the phase retrieval literature.

For phase retrieval, we can use the framework of Krahmer et al. for general

sub-Gaussian measurements:

Theorem 2.With 𝑍∗ = 𝑥∗𝑥∗
∗ , under the assumptions of [KS20] on 𝑥∗ and

sub-Gaussian measurements, if 𝑛 ≳ 𝑑, with high probability, for search rank

𝑝 ≳ 1 +
𝑑 log 𝑛

𝑛 ,

every second-order critical point 𝑋 of (BM-LS) satisfies 𝑋𝑋 ∗ = 𝑍∗ = 𝑥∗𝑥∗
∗.

As another method, we adopt and extend the dual certificate approach of

(among others) [CL13]. The following result is one application:

Theorem 3 (General rank, Gaussian measurements). If 𝑍∗ ⪰ 0 has rank 𝑟, and
𝐴𝑖 = 𝑎𝑖𝑎∗

𝑖 for i.i.d. Gaussian 𝑎1, … , 𝑎𝑛, then, if 𝑛 ≳ 𝑟𝑑, with high probability,
for

𝑝 ≳ (1 +
𝑑 log 𝑛

𝑛 )
tr𝑍∗

𝜎𝑟(𝑍∗)
,

every second-order critical point 𝑋 of (BM-LS) satisfies 𝑋𝑋 ∗ = 𝑍∗.

▶ This can be extended to handle noise (see preprint). The resulting error

bound is nearly optimal even without explicit regularization.

▶ We hope to apply next the dual certificate approach to more realistic

models like masked Fourier measurements.

The tasks of Theorems 2 and 3 had previously only been solved with

semidefinite programming (PhaseLift) or other more elaborate schemes.
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