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Matrix completion and denoising

— Denoising: exploit structure to reduce noise contamination
— Completion: recover matrix from only a few noisy entries!
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The Poisson noise case

— Often an ideal model for count data

— Example: photons arriving at an imaging
sensor

— Example: topic modeling
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Prior work: generic noise

— A lot of literature (Candes and Plan 2010; Keshavan, Montanari, and
Oh 2010; Negahban and Wainwright 2012, etc.)

— Typical estimator:

M= argmin Z (Xij — Mi'j)2 + a|| M|«
M’ S
(4,7)€Q
— Typical theoretical bound (see, e.g., Klopp 2015):
rank(M)

13T — a5 Hm ) <max M + max var(@-j))
P 1,] 2,7

fraction of observed entries

— Requires uniform upper bound on matrix entries and noise variance
— Best results don’t apply to Poisson noise



Prior work: Poisson noise
— Typically MLE with structural constraints/penalties (e.g., Gunasekar,
Ravikumar, and Ghosh 2014; Lafond 2015; Soni et al. 2016; Cao and

Xie 2016)
— Similar dependence on dimension as generic methods
— Poorly conditioned with low rates: unreasonable assumption
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Our framework

— True low-rank rate matrix M € [0, c0)™*"

— Bernoulli sampling model: (i,5) € © independently with probability p
— Sampling operator Aqg: R™*" — R

— Poisson observations: X | Q ~ Poisson(Aq(M))

— Consider matrix “Dantzig selector”-type estimator:

M° = argmin || M|, s.t. | AS(X) — pM'|| < 6
M’ €[0,00)m*n




Upper bound on error

Theorem
If § is chosen properly, we have

HJ\/Z‘S — Ml|r < \/?G(M) + log term,
p

with high probability, where

o(M = max JZMZ]+ (1-p M2+max \IZMZJ+ M2.

In many common situations, the logarithmic term is negligible.



Discussion

n
”]\/Z(S_MHFSJ\/Z max Z M2+mjax Z ]\42

Same as before Noise variance From sampling variance

— Works with low rates!
— No uniform upper bound; compare to previous:

17— Mlle /"7 o M2, 4 max M
17]

7.7

— More refined bound and works with Poisson



Example: denoising case (p = 1)

— MLE: M = X R
E|M — M|z =7 M;
Y]

— If rows and columns have comparable energy, we get

176
IM° = M7 <

— Error reduction =~ reduction in degrees of freedom



Proof outline

— Deterministic: if || A5 (X) —pM| < 0, then HJ\//F — M||F is small
(standard techniques)

— Use matrix concentration to show event holds w.h.p. (Bandeira and
R. van Handel 2016; Latata, Ramon van Handel, and Youssef 2018)

— These results assume bounded or Gaussian noise...
— Need truncation argument to apply to Poisson noise
— Avoiding likelihood function avoids poor conditioning at low rates



Minimax lower bound

Theorem
If p is not too small, then, for all sufficiently large o > 0,

—~ r
it swp BT - M2 o,
M Me[0,00)™*™
rank(M)<r
o(M)<o

hS

where the infimum is over all estimators

— Matches upper bound within a constant; this is the best we can do!

— Proof by standard arguments from information theory and
hypothesis testing



Computation

M° = argmin | M|, s.t. [|A5(X) —pM’|| < 6
M’E[0,0o)mxn
— Estimator can be computed with semidefinite program
— Without > 0 constraint, solvable with singular value thresholding
— Same theoretical guarantees hold without constraint




Poisson recap

— Our approach works for Poisson, unlike the best general analysis
— Good performance at low rates!
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— Minimax optimal performance
— Amenable to more efficient algorithm than previous work



Generalizations and implications

All of our methods generalize to many other noise models

In a minimax sense, simple singular value thresholding is the best
we can do!

Perhaps more sophisticated algorithms can still do better in more
restricted settings

Reminder of gaps in noisy MC theory



Conclusions

— First truly minimax optimal result in Poisson case
— Generalizations refine and extend current state-of-the-art MC results
— Surprising implication: SVD-based algorithms are minimax optimal!

LNSTg Thanks!
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Formal Statements: Upper Bound

Theorem
Let M be a non-negative m x n matrix with rank r. Let Ay = max; ; M;;.
Suppose Q) is chosen according to a Bernoulli sampling model with

sampling probability p, and suppose X ~ Poisson(Aq(M)) conditioned on
Q. Sete e (0,1/2), and choose ¢ such that

8¢

0 >2\/po(M)+

2 vV
+ C'max {)\max, 4log mn} log myn
€ €

5

)

where C is a universal constant. Then, with probability at least 1 — 2e,

— 4216
|V — M < 220

b




Formal Statements: Lower Bound |

Theorem
Let r,k, and ¢ be positive integers, with k > ¢, and take m = rk,n =r/{. Let
p € (0,1], Mnax > 1/8¢p, and set 03 = kApax- Define

Sy = {M € [0, Amax) ™" : rank(M) < r,

mchlXZMij-i- IIle}LXZMZ'j§2O'1}.
\/ J V %

Then, under a Bernoulli sampling model with sampling probability p,

— 1 8log2
inf sup P (HM—MHF > ﬁ‘”) > 1_8log2
M MeS; 8v/2p 2 m




Format Statements: Lower Bound I

2 . Let

Theorem
Again, take m = rk,n = rf with m > n. Set 03 = kX2 ,..

Sy = {M € [0, Amax)™ ™" : rank(M) < r,

2 2
\/m?XZMij—l—\/m]aXZMij §20’2}.
J A

Suppose p > 5-. Then
inf sup EHZ\/Z—Z\IH2 > ragmax{ {1J 1—p}
M Mes, F= 3 2 [2p]"
11-p >
64 p
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