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Matrix completion and denoising

— Denoising: exploit structure to reduce noise contamination

— Completion: recover matrix from only a few noisy entries!
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The Poisson noise case

— Often an ideal model for count data

— Example: photons arriving at an imaging

sensor

— Example: topic modeling
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Prior work: generic noise
— A lot of literature (Candes and Plan 2010; Keshavan, Montanari, and

Oh 2010; Negahban and Wainwright 2012, etc.)

— Typical estimator:

M̂ = argmin
M ′

∑
(i,j)∈Ω

(Xij −M ′
ij)

2 + α‖M ′‖∗

— Typical theoretical bound (see, e.g., Klopp 2015):

‖M̂ −M‖2F .

rank(M)y
r(m+ n)

px
fraction of observed entries

(
max
i,j

|Mij |2 +max
i,j

var(ξij)

)

— Requires uniform upper bound on matrix entries and noise variance

— Best results don’t apply to Poisson noise
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Prior work: Poisson noise
— Typically MLE with structural constraints/penalties (e.g., Gunasekar,

Ravikumar, and Ghosh 2014; Lafond 2015; Soni et al. 2016; Cao and

Xie 2016)

— Similar dependence on dimension as generic methods

— Poorly conditioned with low rates: unreasonable assumption

Word frequencies from ~2000 Project Gutenberg texts
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Our framework

— True low-rank rate matrix M ∈ [0,∞)m×n

— Bernoulli sampling model: (i, j) ∈ Ω independently with probability p

— Sampling operator AΩ : Rm×n → RΩ

— Poisson observations: X | Ω ∼ Poisson(AΩ(M))

— Consider matrix “Dantzig selector”-type estimator:

M̂ δ = argmin
M ′∈[0,∞)m×n

‖M ′‖∗ s.t. ‖A∗
Ω(X)− pM ′‖ ≤ δ

A∗
Ω(X) =
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Upper bound on error

Theorem
If δ is chosen properly, we have

‖M̂ δ −M‖F .
√

r

p
σ̃(M) + log term,

with high probability, where

σ̃(M) = max
i

√√√√ n∑
j=1

Mij + (1− p)M2
ij +max

j

√√√√ m∑
i=1

Mij + (1− p)M2
ij .

In many common situations, the logarithmic term is negligible.



8/15

Discussion

‖M̂ δ−M‖F .

√
r

px
Same as before

max
i

√√√√ n∑
j=1

Mijx
Noise variance

+ (1− p)M2
ij +max

j

√√√√ m∑
i=1

Mij + (1− p)M2
ij︸ ︷︷ ︸x

From sampling variance



— Works with low rates!

— No uniform upper bound; compare to previous:

‖M̂ −M‖F .

√
r(m+ n)

p

√
max
i,j

M2
i,j +max

i,j
Mi,j

— More refined bound and works with Poisson
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Example: denoising case (p = 1)

— MLE: M̂ = X
E‖M̂ −M‖2F =

∑
i,j

Mij

— If rows and columns have comparable energy, we get

‖M̂ δ −M‖2F .
r

m ∧ n
E‖M̂ −M‖2F

— Error reduction ≈ reduction in degrees of freedom



10/15

Proof outline

— Deterministic: if ‖A∗
Ω(X)− pM‖ ≤ δ, then ‖M̂ δ −M‖F is small

(standard techniques)

— Use matrix concentration to show event holds w.h.p. (Bandeira and

R. van Handel 2016; Latała, Ramon van Handel, and Youssef 2018)

— These results assume bounded or Gaussian noise...

— Need truncation argument to apply to Poisson noise

— Avoiding likelihood function avoids poor conditioning at low rates
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Minimax lower bound

Theorem
If p is not too small, then, for all sufficiently large σ > 0,

inf
M̂

sup
M∈[0,∞)m×n

rank(M)≤r
σ̃(M)≤σ

E‖M̂ −M‖2F &
r

p
σ2,

where the infimum is over all estimators

— Matches upper bound within a constant; this is the best we can do!

— Proof by standard arguments from information theory and

hypothesis testing
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Computation

M̂ δ = argmin
M ′∈[0,∞)m×n

‖M ′‖∗ s.t. ‖A∗
Ω(X)− pM ′‖ ≤ δ

— Estimator can be computed with semidefinite program

— Without ≥ 0 constraint, solvable with singular value thresholding

— Same theoretical guarantees hold without constraint

= × × →



13/15

Poisson recap

— Our approach works for Poisson, unlike the best general analysis

— Good performance at low rates!
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— Minimax optimal performance

— Amenable to more efficient algorithm than previous work
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Generalizations and implications

— All of our methods generalize to many other noise models

— In a minimax sense, simple singular value thresholding is the best

we can do!

— Perhaps more sophisticated algorithms can still do better in more

restricted settings

— Reminder of gaps in noisy MC theory
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Conclusions

— First truly minimax optimal result in Poisson case

— Generalizations refine and extend current state-of-the-art MC results

— Surprising implication: SVD-based algorithms are minimax optimal!

Thanks!



1/5

References I

— Bandeira, A. and R. van Handel (July 2016). “Sharp nonasymptotic

bounds on the norm of random matrices with independent entries”.

In: Ann. Probab. 44.4, pp. 2479–2506.

— Candes, E. and Y. Plan (June 2010). “Matrix Completion With Noise”. In:

Proc. IEEE 98.6, pp. 925–936.

— Cao, Y. and Y. Xie (Mar. 2016). “Poisson Matrix Recovery and

Completion”. In: IEEE Trans. Signal Process. 64.6, pp. 1609–1620.

— Gunasekar, S., P. Ravikumar, and J. Ghosh (June 2014). “Exponential

Family Matrix Completion under Structural Constraints”. In: Proc. Int.

Conf. Mach. Learn. (ICML). Beijing, China.

— Keshavan, R., A. Montanari, and S. Oh (2010). “Matrix Completion from

Noisy Entries”. In: J. Mach. Learn. Res. 11, pp. 2057–2078.

— Klopp, O. (2015). “Matrix Completion by Singular Value Thresholding:

Sharp Bounds”. In: Electron. J. Stat. 9, pp. 2348–2369.



2/5

References II

— Lafond, Jean (July 2015). “Low Rank Matrix Completion with Exponential

Family Noise”. In: Proc. Conf. Learn. Theory (COLT). Paris, France.

— Latała, Rafał, Ramon van Handel, and Pierre Youssef (Dec. 2018). “The

dimension-free structure of nonhomogeneous random matrices”. In:

Invent. Math. 214 (3), pp. 1031–1080.

— Negahban, Sahand and Martin Wainwright (May 2012). “Restricted

Strong Convexity and Weighted Matrix Completion: Optimal Bounds

with Noise”. In: J. Mach. Learn. Res. 13, pp. 1665–1697.

— Soni, A. et al. (June 2016). “Noisy Matrix Completion Under Sparse

Factor Models”. In: IEEE Trans. Inf. Theory 62.6, pp. 3636–3661.



3/5

Formal Statements: Upper Bound

Theorem
Let M be a non-negative m× n matrix with rank r. Let λmax = maxi,j Mij.

Suppose Ω is chosen according to a Bernoulli sampling model with

sampling probability p, and suppose X ∼ Poisson(AΩ(M)) conditioned on

Ω. Set ε ∈ (0, 1/2), and choose δ such that

δ ≥ 2
√
pσ̃(M) +

8ε√
mn

+ Cmax

{
λmax, 4 log

2mn

ε

}√
log

m ∨ n

ε
,

where C is a universal constant. Then, with probability at least 1− 2ε,

‖M̂ δ −M‖F ≤ 4
√
2rδ

p
.
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Formal Statements: Lower Bound I

Theorem
Let r, k, and ` be positive integers, with k ≥ `, and take m = rk, n = r`. Let
p ∈ (0, 1], λmax ≥ 1/8`p, and set σ2

1 = kλmax. Define

S1 =

{
M ∈ [0, λmax]

m×n : rank(M) ≤ r,

√
max

i

∑
j

Mij +

√
max

j

∑
i

Mij ≤ 2σ1

}
.

Then, under a Bernoulli sampling model with sampling probability p,

inf
M̂

sup
M∈S1

P

(
‖M̂ −M‖F ≥

√
rσ1

8
√
2p

)
≥ 1

2
− 8 log 2

m
.
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Format Statements: Lower Bound II

Theorem
Again, take m = rk, n = r` with m ≥ n. Set σ2

2 = kλ2
max. Let

S2 =

{
M ∈ [0, λmax]

m×n : rank(M) ≤ r,

√
max

i

∑
j

M2
ij +

√
max

j

∑
i

M2
ij ≤ 2σ2

}
.

Suppose p ≥ r
2n . Then

inf
M̂

sup
M∈S2

E‖M̂ −M‖2F ≥ rσ2
2

8
max

{
1

2

⌊
1

2p

⌋
, 1− p

}
≥ 1

64

1− p

p
rσ2

2.
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