Risk bounds for regression and classification with structured feature maps

Andrew D. McRae

Georgia Tech School of Electrical and Computer Engineering admcrae@gatech.edu Joint work with Vidya Muthukumar, Justin Romberg, and Mark Davenport

> IFDS-MADLab Workshop, UW Madison August 2021

Setup: feature maps for linear regression

Linear regression model with feature map $\boldsymbol{\phi}(x) = (\phi_1(x), \dots, \phi_d(x))$:

$$f(x, \boldsymbol{w}) = \langle \boldsymbol{\phi}(x), \boldsymbol{w} \rangle = \sum_{\ell} w_{\ell} \phi_{\ell}(x)$$

Suppose $f^*(x) = f(x, \boldsymbol{w}^*)$, and observe $y_i = f^*(x_i) + \xi_i$ for i = 1, ..., n. In matrix form,

$$\begin{bmatrix} y_1\\ \vdots\\ y_n \end{bmatrix} = \underbrace{\begin{bmatrix} \phi_1(x_1) & \cdots & \phi_d(x_1)\\ \vdots & \ddots & \vdots\\ \phi_1(x_n) & \cdots & \phi_d(x_n) \end{bmatrix}}_{\boldsymbol{\Psi}} \boldsymbol{w}^* + \underbrace{\begin{bmatrix} \xi_1\\ \vdots\\ \xi_n \end{bmatrix}}_{\boldsymbol{\xi}}$$

Standard ridge regression estimate with regularization $\delta \geq 0$:

$$\widehat{\boldsymbol{w}} = (\delta \boldsymbol{I}_d + \boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y} = \boldsymbol{\Phi}^T (\delta \boldsymbol{I}_n + \underline{\boldsymbol{\Phi}} \underline{\boldsymbol{\Phi}}^T)^{-1} \boldsymbol{y}$$

Gram matrix

Noise requires regularization-right?

$$\mathbf{y} = \underbrace{\mathbf{\Phi}}_{n \times d} \mathbf{w}^* + \mathbf{\xi}$$
$$\widehat{\mathbf{w}} = \mathbf{\Phi}^T (\delta \mathbf{I}_n + \mathbf{\Phi} \mathbf{\Phi}^T)^{-1} (\mathbf{\Phi} \mathbf{w}^* + \mathbf{\xi})$$

If $\delta = 0$ and $d \ge n$, $f(\cdot, \widehat{w})$ will interpolate the samples

$$\boldsymbol{\Phi}\widehat{\boldsymbol{w}} = \boldsymbol{\Phi}\boldsymbol{\Phi}^T(\boldsymbol{\Phi}\boldsymbol{\Phi}^T)^{-1}\boldsymbol{y} = \boldsymbol{y}$$

Noise requires regularization-right?

$$\mathbf{y} = \underbrace{\mathbf{\Phi}}_{n \times d} \mathbf{w}^* + \mathbf{\xi}$$
$$\widehat{\mathbf{w}} = \mathbf{\Phi}^T (\delta \mathbf{I}_n + \mathbf{\Phi} \mathbf{\Phi}^T)^{-1} (\mathbf{\Phi} \mathbf{w}^* + \mathbf{\xi})$$

If $\delta = 0$ and $d \ge n$, $f(\cdot, \hat{w})$ will interpolate the samples

$$\boldsymbol{\Phi}\widehat{\boldsymbol{w}} = \boldsymbol{\Phi}\boldsymbol{\Phi}^T(\boldsymbol{\Phi}\boldsymbol{\Phi}^T)^{-1}\boldsymbol{y} = \boldsymbol{y}$$

Overparametrization...

Lots of recent papers show that in certain settings, interpolating noise isn't too bad

► Why?

Split the features into two groups:

$$\boldsymbol{\phi}(x) = (\underbrace{\phi_1(x), \dots, \phi_p(x)}_{\boldsymbol{\phi}_H(x)}, \underbrace{\phi_{p+1}(x), \dots, \phi_d(x)}_{\boldsymbol{\phi}_R(x)}), \quad \boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\Phi}_H \\ n \times p \end{bmatrix} \xrightarrow{n \times (d-p)}$$

Then

$$\boldsymbol{\phi}\boldsymbol{\phi}^T = \boldsymbol{\phi}_H \boldsymbol{\phi}_H^T + \boldsymbol{\phi}_R \boldsymbol{\phi}_R^T$$

... can give implicit regularization

Gram matrix: $\boldsymbol{\Phi}\boldsymbol{\Phi}^T = \boldsymbol{\Phi}_H \boldsymbol{\Phi}_H^T + \boldsymbol{\Phi}_R \boldsymbol{\Phi}_R^T$

- ► If $d p \gg n$, sometimes $\boldsymbol{\Phi}_R \boldsymbol{\Phi}_R^T \approx r \boldsymbol{I}_n$ (for some r > 0)! So $\hat{\boldsymbol{w}} \approx \boldsymbol{\Phi}^T (r \boldsymbol{I}_n + \boldsymbol{\Phi}_H \boldsymbol{\Phi}_H^T)^{-1} \boldsymbol{y}$.
- Previous work¹² assumes independent features
 - ▶ Only requires $d p \gtrsim n$
 - Not always realistic: kernel/RKHS regression, Fourier features, etc.
- ▶ Our work: for merely **uncorrelated** features, $d p \gtrsim n^2$ is enough

²Tengyuan Liang and Alexander Rakhlin (2020). "Just interpolate: Kernel "Ridgeless" regression can generalize". In: *Ann. Stat.* 48.3, pp. 1329–1347.

¹Peter L. Bartlett et al. (2020). "Benign overfitting in linear regression". In: *Proc. Natl. Acad. Sci. U.S.A.* 117.48, pp. 30063–30070.

Example (Fourier series)

Now y is a label in $\{-1, 1\}$. Let

$$f^*(x) = \mathbf{E}[y | x] = 2 \mathbf{P}[y = 1 | x] - 1, \quad \xi = y - f^*(x)$$

Classifier: estimate \hat{w} as before from samples $(x_1, y_1), \dots, (x_n, y_n)$ and set

 $\hat{y}(x) = \operatorname{sign}(f(x, \widehat{\boldsymbol{w}}))$

Binary labels example

Finer analysis for classification

 $\hat{y}(x) = \operatorname{sign}(f(x, \widehat{\boldsymbol{w}}))$

Classification is easier than regression since we only need the sign!

- ▶ ∃ regimes where regression error is large but classification risk is small
- Previously shown under very special conditions³
- \blacktriangleright We've proved this in more general setting (uncorrelated features, more general f^*)
- Basic idea: if $f(x, \hat{w}) = af^*(x) + h(x)$, then (excess) classification risk is small as long as a > 0 and $||h||_{L_1} \ll a$, even if $a \ll 1$!

³Vidya Muthukumar et al. (2021). "Classification vs. regression in overparameterized regimes: Does the loss function matter?" In: J. Mach. Learn. Res. arXiv: 2005.08054. Forthcoming.

Large regression but small classification error

