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Setup: feature maps for linear regression

Linear regression model with feature map 𝝓(𝑥) = (𝜙1(𝑥), … , 𝜙𝑑(𝑥)):

𝑓(𝑥, 𝒘) = ⟨𝝓(𝑥), 𝒘⟩ = ∑
ℓ

𝑤ℓ𝜙ℓ(𝑥)

Suppose 𝑓∗(𝑥) = 𝑓(𝑥, 𝒘∗), and observe 𝑦𝑖 = 𝑓∗(𝑥𝑖) + 𝜉𝑖 for 𝑖 = 1, … , 𝑛. In matrix form,
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Standard ridge regression estimate with regularization 𝛿 ≥ 0:

𝒘 = (𝛿𝑰𝑑 + 𝜱𝑇𝜱)−1𝜱𝑇𝒚 = 𝜱𝑇(𝛿𝑰𝑛 + 𝜱𝜱𝑇⏟
Gram matrix

)−1𝒚



Noise requires regularization—right?

𝒚 = 𝜱⏟
𝑛×𝑑

𝒘∗ + 𝝃

𝒘 = 𝜱𝑇(𝛿𝑰𝑛 + 𝜱𝜱𝑇)−1(𝜱𝒘∗ + 𝝃)

If 𝛿 = 0 and 𝑑 ≥ 𝑛, 𝑓(⋅, 𝒘) will interpolate the samples

𝜱𝒘 = 𝜱𝜱𝑇(𝜱𝜱𝑇)−1𝒚 = 𝒚
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Overparametrization…

Lots of recent papers show that in certain settings, interpolating noise isn’t too bad

▶ Why?

Split the features into two groups:

𝝓(𝑥) = (𝜙1(𝑥), … , 𝜙𝑝(𝑥)⏟⏟⏟⏟⏟
𝝓𝐻(𝑥)

, 𝜙𝑝+1(𝑥), … , 𝜙𝑑(𝑥)⏟⏟⏟⏟⏟⏟⏟
𝝓𝑅(𝑥)

), 𝜱 = [𝜱𝐻⏟
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𝜱𝑅⏟
𝑛×(𝑑−𝑝)

]

Then

𝜱𝜱𝑇 = 𝜱𝐻𝜱𝑇
𝐻 + 𝜱𝑅𝜱𝑇

𝑅



…can give implicit regularization

Gram matrix: 𝜱𝜱𝑇 = 𝜱𝐻𝜱𝑇
𝐻 + 𝜱𝑅𝜱𝑇

𝑅

▶ If 𝑑 − 𝑝 ≫ 𝑛, sometimes 𝜱𝑅𝜱𝑇
𝑅 ≈ 𝑟𝑰𝑛 (for some 𝑟 > 0)! So 𝒘 ≈ 𝜱𝑇(𝑟𝑰𝑛 + 𝜱𝐻𝜱𝑇

𝐻)−1𝒚.
▶ Previous work12 assumes independent features

▶ Only requires 𝑑 − 𝑝 ≳ 𝑛
▶ Not always realistic: kernel/RKHS regression, Fourier features, etc.

▶ Our work: for merely uncorrelated features, 𝑑 − 𝑝 ≳ 𝑛2 is enough

1Peter L. Bartlett et al. (2020). “Benign overfitting in linear regression”. In: Proc. Natl. Acad. Sci. U.S.A.
117.48, pp. 30063–30070.

2Tengyuan Liang and Alexander Rakhlin (2020). “Just interpolate: Kernel “Ridgeless“ regression can

generalize”. In: Ann. Stat. 48.3, pp. 1329–1347.



Example (Fourier series)
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What about classification?

▶ Now 𝑦 is a label in {−1, 1}. Let

𝑓∗(𝑥) = E[𝑦 | 𝑥] = 2P[𝑦 = 1 | 𝑥] − 1, 𝜉 = 𝑦 − 𝑓∗(𝑥)

▶ Classifier: estimate 𝒘 as before from samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) and set

�̂�(𝑥) = sign(𝑓(𝑥, 𝒘))



Binary labels example
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Finer analysis for classification

�̂�(𝑥) = sign(𝑓(𝑥, 𝒘))

▶ Classification is easier than regression since we only need the sign!

▶ ∃ regimes where regression error is large but classification risk is small

▶ Previously shown under very special conditions3

▶ We’ve proved this in more general setting (uncorrelated features, more general 𝑓∗)
▶ Basic idea: if 𝑓(𝑥, 𝒘) = 𝑎𝑓∗(𝑥) + ℎ(𝑥), then (excess) classification risk is small as long as

𝑎 > 0 and ‖ℎ‖𝐿1
≪ 𝑎, even if 𝑎 ≪ 1!

3Vidya Muthukumar et al. (2021). “Classification vs. regression in overparameterized regimes: Does the loss

function matter?” In: J. Mach. Learn. Res. arXiv: 2005.08054. Forthcoming.

https://arxiv.org/abs/2005.08054


Large regression but small classification error
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