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Setup: feature maps for linear regression

Linear regression model with feature map ¢(x) = (¢(x), ..., ¢4(x)):
flow) = (0. w) = > wde(x)
L

Suppose f*(x) = f(x,w"), and observe y; = f*(x;) + & for i =1,...,n. In matrix form,
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Standard ridge regression estimate with regularization & = O:
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Noise requires regularization—right?
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If =0 and d > n, f(-,w) will interpolate the samples
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Overparametrization...

Lots of recent papers show that in certain settings, interpolating noise isn't too bad
» Why?

Split the features into two groups:
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...can give implicit regularization

Gram matrix. @@ = d)HCDL + ‘DR‘DE

» If d — p > n, sometimes ¢R¢£ ~ rl, (for some r > 0) So w =~ d’T(rln +¢H¢L)_1y.
> Previous work'? assumes independent features

» Only requires d — p = n
> Not always realistic: kernel/RKHS regression, Fourier features, etc.

» Our work: for merely uncorrelated features, d — p = n? is enough

"Peter L. Bartlett et al. (2020). "Benign overfitting in linear regression”. In: Proc. Natl. Acad. Sci. U.S.A.
117.48, pp. 30063-30070.

2Tengyuan Liang and Alexander Rakhlin (2020). “Just interpolate: Kernel "Ridgeless" regression can
generalize”. In: Ann. Stat. 48.3, pp. 1329—1347.
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Example (Fourier series)
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What about classification?

> Now y is a label in {—1,1}. Let

) =Ely|x]=2Ply=1]x]=1 §=y—f(x)

» Classifier: estimate W as before from samples (x{, ¥1), ..., (x,, ¥,) and set

J() = sign(f (x, W)



Binary labels example
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Finer analysis for classification

J(x) = sign(f(x w))

> Classification is easier than regression since we only need the sign!
» 3 regimes where regression error is large but classification risk is small
» Previously shown under very special conditions>
> We've proved this in more general setting (uncorrelated features, more general f*)
» Basic idea: if f(x,w) = af"(x) 4+ h(x), then (excess) classification risk is small as long as
a>0 and [[h]|, <K a, even if a <1l

3Vidya Muthukumar et al. (2021). “Classification vs. regression in overparameterized regimes: Does the loss
function matter?” In: J. Mach. Learn. Res. arXiv: 2005.08054. Forthcoming.


https://arxiv.org/abs/2005.08054

Large regression but small classification error
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